首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic ethanol ingestion mildly damages liver through oxidative stress and lipid oxidation, which is ameliorated by dietary supplementation with the anti-inflammatory β-amino acid taurine. Kidney, like liver, expresses cytochrome P450 2E1 that catabolizes ethanol with free radical formation, and so also may be damaged by ethanol catabolism. Sudden loss of kidney function, and not liver disease itself, foreshadows mortality in patients with alcoholic hepatitis [J. Altamirano, Clin. Gastroenterol. Hepatol. 2012, 10:65]. We found that ethanol ingestion in the Lieber-deCarli rat model increased kidney lipid oxidation, 4-hydroxynonenal protein adduction, and oxidatively truncated phospholipids that attract and activate leukocytes. Chronic ethanol ingestion increased myeloperoxidase-expressing cells in kidney and induced an inflammatory cell infiltrate. Apoptotic terminal deoxynucleotidyl transferase nick-end labeling-positive cells and active caspase-3 increased in kidney after ethanol ingestion, with reduced filtration with increased circulating blood urea nitrogen (BUN) and creatinine. These events were accompanied by release of albumin, myeloperoxidase, and the acute kidney injury biomarkers kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin, and cystatin c into urine. Taurine sequesters HOCl from myeloperoxidase of activated leukocytes, and taurine supplementation reduced renal lipid oxidation, reduced leukocyte infiltration, and reduced the increase in myeloperoxidase-positive cells during ethanol feeding. Taurine supplementation also normalized circulating BUN and creatinine levels and suppressed enhanced myeloperoxidase, albumin, KIM-1, and cystatin c in urine. Thus, chronic ethanol ingestion oxidatively damages kidney lipids and proteins, damages renal function, and induces acute kidney injury through an inflammatory cell infiltrate. The anti-inflammatory nutraceutical taurine effectively interrupts this ethanol-induced inflammatory cycle in kidney.  相似文献   

2.
Non-alcoholic steatohepatitis (NASH) is viewed as the hepatic manifestation of the metabolic syndrome and is a condition hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). Currently, the etiology and mechanisms leading to obesity-induced hepatic inflammation are not clear and, as a consequence, strategies to diagnose or treat NASH in an accurate manner do not exist. In the current review, we put forward the concept of oxidized lipids as a significant risk factor for NASH. We will focus on the contribution of the different types of oxidized lipids as part of the oxidized low-density lipoprotein (oxLDL) to the hepatic inflammatory response. Furthermore, we will elaborate on the underlying mechanisms linking oxLDL to inflammatory responses in the liver and on how these cascades can be used as therapeutic targets to combat NASH. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.  相似文献   

3.
PURPOSE OF REVIEW: This review will summarize recent evidence demonstrating that biologically active phospholipid oxidation products modulate inflammatory reactions. RECENT FINDINGS: Structural identification of new biologically active oxidized phospholipids and the finding that they can also be formed at inflammatory sites other than the atherosclerotic lesion have expanded the potential role of these compounds in inflammation beyond atherogenesis. Various signaling pathways are induced by oxidized phospholipids, leading to the expression of inflammatory genes by mechanisms that differ from those mediated by the classic inflammatory agonists tumor necrosis factor or lipopolysaccharide. Furthermore, oxidized phospholipids can bind to pattern recognition molecules and thus potently influence inflammation and immune responses during host defense. SUMMARY: During inflammatory processes biologically active lipid oxidation products accumulate that modulate the inflammatory process and may determine the fate and outcome of the body's reaction in acute inflammation during host defense. Oxidized phospholipids may induce and propagate chronic inflammatory processes; however, evidence is accumulating that cells and tissues respond towards these oxidatively formed stress signals also by activation of anti-inflammatory, cytoprotective reactions.  相似文献   

4.
BackgroundMetabolic-associated fatty liver disease (MAFLD) is a spectrum of liver disorders. Nonalcoholic steatohepatitis (NASH) is defined as a more serious process of MAFLD with liver inflammation.PurposeThis study aims to observe the alleviation of Yinhuang granule (YHG), a Chinese patent medicine, on methionine and choline-deficient diet (MCD)-induced MAFLD in mice.MethodsNetwork pharmacology was used to analyze the improving effect of YHG on MAFLD and possible targets. MAFLD was induced in mice by MCD diet feeding for 6 weeks. In the last 2 weeks, the mice were orally given with YHG (400, 800 mg/kg) every day. Biochemical parameters of serum and liver, as well as hepatic gene expression were detected.ResultsNetwork pharmacology showed that YHG could improve MAFLD, inflammation, liver fibrosis, and oxidative stress. In animal experiments, YHG reduced hepatocellular damage and hepatic lipids accumulation which induced by MCD. In terms of liver inflammation, YHG attenuated MCD-induced liver inflammation in mice. YHG also inhibited the activation of hepatic stellate cells (HSCs) and alleviated liver fibrosis in MCD-fed mice. Through nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, YHG alleviated liver oxidative stress injury in mice which induced by MCD.ConclusionYHG ameliorated MCD-induced MAFLD in mice by reducing hepatic lipids accumulation, alleviating liver oxidative, inflammatory injury and attenuating hepatic fibrosis.  相似文献   

5.
We constructed a chronic oxidative stress model in which Se-deficient diet was fed to male Wister rats for 8 weeks. As expected, effects of oxidative damage, including Fe accumulation and increase in peroxidized lipids, were identified in the liver owing to the lack of glutathione peroxidase. Although the oxidative stress caused Fe accumulation in the liver, the Fe concentration in bile of the SeD rat was almost the same as that in the control rats. The constant excretion of Fe into bile supported the Fe accumulation in the liver. No differences were observed in the principal components of biliary lipids, i.e., bile acids, phospholipids, and cholesterol, between the two groups; moreover, these trends were also reflected in the plasma. Due to the trapping of reactive oxygen species, only bilirubin concentrations in the bile and plasma were decreased in the SeD group, when compared with those in the control group. Measurement of bilirubin concentration may be used as a supplemental oxidative stress marker.  相似文献   

6.
Effects of ethanol on lipid metabolism.   总被引:11,自引:0,他引:11  
Alcohol promotes accumulation of fat in the liver mainly by substitution of ethanol for fatty acids as the major hepatic fuel. The degree of lipid accumulation depends on the supply of dietary fat. Progressive alteration of the mitochondria, which occurs during chronic alcohol consumption, decreases fatty acid oxidation by interfering with citric acid cycle activity. This block is partially compensated for by increased ketone body production, which results in ketonemia. Thus, mitochondrial damage perpetuates fatty acid accumulation even in the absence of ethanol oxidation. Alcohol facilitates esterification of the accumulated fatty acids to triglycerides, phospholipids, and cholesterol esters, all of which accumulate in the liver. The accumulated lipids are disposed of in part as serum lipoprotein, resulting in moderate hyperlipemia. In some individuals with pre-existing alterations of lipid metabolism, small ethanol dose may provoke marked hyperlipemia which responds to alcohol withdrawal. Inhibition of the catabolism of cholesterol to bile salt may contribute to the hepatic accumulation and hypercholesterolemia. The capacity of lipoprotein production and hyperlipemia development increases during chronic alcohol consumption, probably as a result of the concomitant hypertrophy of the endoplasmic reticulum and Golgi apparatus. However, this compensation is relatively inefficient in ridding the liver of fat. This inefficiency may be linked to alterations of hepatic microtubules induced by ethanol or its metabolites, which interfere with the export of protein from liver to serum, promoting hepatic accumulation of proteins as well as fat. As liver injury aggravates, hyperlipemia wanes and liver steatosis is exaggerated. Derangements of serum lipids similar to those found in other types of liver disease also become apparent. The changes in serum lipids may be a sensitive indicator of the progression of liver damage in the alcoholic.  相似文献   

7.
Unmitigated oxidative stress is deleterious, as epitomized by CCl4 intoxication. In this well-characterized model of free radical-initiated damage, liver metabolism of CCl4 to CCl3. causes lipid peroxidation, F-ring isoprostane formation, and pathologic leukocyte activation. The nature of the mediator that couples oxidation to the hepatotoxic inflammatory response is uncharacterized. We found that oxidatively modified phosphatidylcholines were present in the livers of CCl4-exposed rats and not in livers from control animals, that CCl4 metabolism generated lipids that activated 293 cells stably transfected with the human platelet-activating factor (PAF) receptor, and that this PAF-like activity was formed as rapidly as isoprostane-containing phosphatidylcholine (iPC) during oxidation. iPC and the PAF-like activity also had similar chromatographic properties. The potential for iPC activation of the PAF receptor has been unexplored, but we conclude that iPC themselves did not activate the PAF receptor, as phospholipase A1 hydrolysis completely destroyed iPC, but none of the PAF-like bioactivity. Oxidatively fragmented phospholipids are potent agonists of the PAF receptor, but mass spectrometry characterized PAF as the major inflammatory component coeluting with iPC. Oxidatively fragmented phospholipids and iPC are markers of free radical generation in CCl4-intoxicated liver, but PAF generation by activated hepatic cells generated the inflammatory agent.  相似文献   

8.
Alcoholic liver disease (ALD) is a complex process with high morbitity and can cause liver dysfunction, which contains a wide spectrum of hepatic lesions, including steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. To date, the molecular mechanisms for ALD have not been fully explored and an effective therapy is still missing. Overwhelming evidence shows dysregulation of noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), is correlated with etiopathogenesis and progress of ALD including hepatocyte damage, disrupted lipid metabolism, aggressive inflammatory responses, oxidative stress, programmed cell death, fibrosis, and epigenetic changes induced by alcohol. For example, circulating miRNA-122 is a marker of hepatocyte damage, and miRNA-155 is a potential marker of inflammation, indicating their diagnosis therapeutic potential in ALD. In addition, roles for long noncoding RNAs (lncRNAs) and circular RNAs in ALD are being uncovered. Further, circulating ncRNAs and exosome-derived ncRNAs have attracted more attention lately, suggesting a role in the prevention and treatment of ALD. This review covers the roles of ncRNAs in ALD, and the potential uses as markers for diagnosis and therapeutic options.  相似文献   

9.
Oxidative tissue damage is a hallmark of many chronic inflammatory diseases. However, the precise mechanisms linking oxidative changes to inflammatory reactions remain unclear. Herein we show that Toll-like receptor 2 (TLR2) translates oxidative tissue damage into inflammatory responses by mediating the effects of oxidized phospholipids. Intraperitoneal injection of oxidized 1-palmitoyl-2-arachidonyl-sn-3-glycerophosphorylcholine (OxPAPC) resulted in upregulation of inflammatory genes in wild-type, but not in TLR2(-/-) mice. In vitro, OxPAPC induced TLR2 (but not TLR4)-dependent inflammatory gene expression and JNK and p38 signaling in macrophages. Induction of TLR2-dependent gene expression required reducible functional groups on sn-2 acyl chains of oxidized phospholipids, as well as serum cofactors. Finally, TLR2(-/-) mice were protected against carbon tetrachloride-induced oxidative tissue damage and inflammation, which was accompanied by accumulation of oxidized phospholipids in livers. Together, our findings demonstrate that TLR2 mediates cellular responses to oxidative tissue damage and they provide new insights into how oxidative stress is linked to acute and chronic inflammation.  相似文献   

10.
Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency.  相似文献   

11.
Methionine-choline-deficient (MCD) diets that cause steatohepatitis in rodents are typically enriched in polyunsaturated fat. To determine whether the fat composition of the MCD formula influences the development of liver disease, we manufactured custom MCD formulas with fats ranging in PUFA content from 2% to 59% and tested them for their ability to induce steatohepatitis. All modified-fat MCD formulas caused identical degrees of hepatic steatosis and resulted in a similar distribution of fat within individual hepatic lipid compartments. The fatty acid composition of hepatic lipids, however, reflected the fat composition of the diet. Mice fed a PUFA-rich MCD formula showed extensive hepatic lipid peroxidation, induction of proinflammatory genes, and histologic inflammation. When PUFAs were substituted with more saturated fats, lipid peroxidation, proinflammatory gene induction, and hepatic inflammation all declined significantly. Despite the close relationship between PUFAs and hepatic inflammation in mice fed MCD formulas, dietary fat had no impact on MCD-mediated damage to hepatocytes. Indeed, histologic apoptosis and serum alanine aminotransferase levels were comparable in all MCD-fed mice regardless of dietary fat content. Together, these results indicate that dietary PUFAs promote hepatic inflammation but not hepatotoxicity in the MCD model of liver disease. These findings emphasize that individual dietary nutrients can make specific contributions to steatohepatitis.  相似文献   

12.
Oxidative mechanisms in the pathogenesis of alcoholic liver disease   总被引:5,自引:0,他引:5  
Although the capacity of ethanol to induce oxidative stress in the liver is well established, the mechanisms by which oxidative damage contributes to the pathogenesis of alcoholic liver disease (ALD) is still incompletely understood. Recent reports have implicated oxidative mechanisms in the onset of alcoholic steatosis and in the formation of Mallory's bodies. Moreover, by inducing mitochondrial alterations, oxidative stress promotes hepatocyte necrosis and contributes to alcohol-induced sensitization of hepatocyte to the pro-apoptotic action of TNF-alpha. Oxidative mechanisms play also a role in the progression of liver fibrosis by triggering the release of pro-fibrotic cytokines and activating collagen gene expression in hepatic stellate cells. Finally, immune responses towards antigens originating from the reactions of lipid peroxidation products with hepatic proteins might represent one of the mechanisms that contribute to perpetuate chronic hepatic inflammation in ALD. Altogether these observations give a rationale to the possible clinical application of antioxidants in the therapy of ALD.  相似文献   

13.
Lipid droplets (LDs) are ubiquitous and physiologically active organelles regulating storage and mobilization of lipids in response to metabolic demands. Among the constituent LD neutral lipids, such as triacylglycerols, cholesterol esters, and free fatty acids, oxidizable polyunsaturated molecular species may be quite abundant, yet the structural and functional roles of their oxidation products have not been studied. Our previous work documented the presence of these peroxidized species in LDs. Assuming that hydrophilic oxygen-containing functionalities may markedly change the hydrophobic/hydrophilic molecular balance, here we utilized computational modeling to test the hypothesis that lipid peroxidation causes redistribution of lipids between the highly hydrophobic core and the polar surface (phospho)lipid monolayer—the area enriched with integrated enzymatic machinery. Using quantitative liquid chromatography/mass spectrometry, we characterized molecular speciation of oxTAGs in LDs of dendritic cells in cancer and hypoxic trophoblasts cells as two cellular models associated with dyslipidemia. Among the many types of oxidized lipids identified, we found that oxidatively truncated forms and hydroxyl derivatives of TAGs were the prevailing oxidized lipid species in LDs in both cell types. Using coarse-grained molecular dynamics (CG-MD) simulations we established that lipid oxidation changed their partitioning whereby oxidized lipids migrated into the outer monolayer of the LD, where they can affect essential metabolic pathways and undergo conversions, possibly leading to the formation of oxygenated lipid mediators.  相似文献   

14.
The inflammatory component of non–alcoholic steatohepatitis (NASH) can lead to irreversible liver damage. Therefore there is an urgent need to identify novel interventions to combat hepatic inflammation. In mice, omitting cholesterol from the diet reduced hepatic inflammation. Considering the effects of plant sterol/stanol esters on cholesterol metabolism, we hypothesized that plant sterol/stanol esters reduces hepatic inflammation. Indeed, adding plant sterol/stanol esters to a high-fat-diet reduced hepatic inflammation as indicated by immunohistochemical stainings and gene expression for inflammatory markers. Finally, adding sterol/stanol esters lowered hepatic concentrations of cholesterol precursors lathosterol and desmosterol in mice, which were highly elevated in the HFD group similarly as observed in severely obese patients with NASH. In vitro, in isolated LPS stimulated bone marrow derived macrophages desmosterol activated cholesterol efflux whereas sitostanol reduced inflammation. This highly interesting observation that plant sterol/stanol ester consumption leads to complete inhibition of HFD-induced liver inflammation opens new venues in the treatment and prevention of hepatic inflammation.  相似文献   

15.
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.  相似文献   

16.
Chronic alcohol intake is associated with an increase in fasting plasma high density lipoproteins (HDL). To study alcohol's acute effects on plasma lipoproteins, we measured plasma lipoprotein concentrations and activities of postheparin plasma lipases in nine normolipemic males after ingestion of 40 g of ethanol (as whiskey). After alcohol there was no change in lipoprotein lipase activity but hepatic lipase was decreased to 67% of baseline at 6 hr. There were associated increases in HDL phospholipids (12 mg/dl) and cholesterol (10 mg/dl) resulting in prominence of larger, lipid-enriched HDL particles. Changes were most pronounced in the HDL3 and HDL2a subclasses. Very low density lipoprotein (VLDL) phospholipids and cholesterol were also increased by 13 and 9 mg/dl, respectively, with no significant change in triglycerides. Changes in lipoproteins and lipase were largely reversed 10 hr after alcohol intake. The transient increases in VLDL and HDL lipids after alcohol may result in part from acute inhibition of hepatic lipase activity. The results suggest a role of hepatic lipase in the catabolism of phospholipids of VLDL and possibly HDL.  相似文献   

17.
Oxidatively truncated phospholipids are present in atherosclerotic lesions, apoptotic cells, and oxidized low density lipoproteins. Some of these lipids rapidly enter cells to induce apoptosis by the intrinsic pathway, but how such lipids initiate this process is unknown. We show the truncated phospholipid hexadecyl azelaoyl glycerophosphocholine (Az-LPAF), derived from the fragmentation of abundant sn-2 linoleoyl residues, depolarized mitochondria of intact cells. Az-LPAF also depolarized isolated mitochondria and allowed NADH loss, but did not directly interfere with complex I function. Cyclosporin A blockade of the mitochondrial permeability transition pore partially prevented the loss of electrochemical potential. Depolarization of isolated mitochondria by the truncated phospholipid was readily reversed by the addition of albumin that sequestered this lipid. Ectopic expression of the anti-apoptotic protein Bcl-XL in HL-60 cells reduced apoptosis by the truncated phospholipid by protecting their mitochondria. Mitochondria isolated from these cells were also protected from Az-LPAF-induced depolarization. Conversely mitochondria isolated from Bid−/− animals that lack this pro-apoptotic Bcl-2 family member were resistant to Az-LPAF depolarization. Addition of recombinant full-length Bid, which has phospholipid transfer activity, restored this sensitivity. Thus, phospholipid oxidation products physically interact with mitochondria to continually depolarize this organelle without permanent harm, and Bcl-2 family members modulate this interaction with full-length Bid acting as a co-factor for pro-apoptotic, oxidatively truncated phospholipids.Vascular cells are exposed to oxidizing radicals during normal metabolism, but especially so during physiologic and pathologic inflammatory processes. The double bonds of polyunsaturated fatty acyl residues are particularly prone to attack by radicals because the C-H bond situated between two double bonds is relatively weak, allowing a more facile abstraction of hydrogen to produce a radical (1). Because polyunsaturated fatty acyl residues are abundant and are generally esterified in the sn-2 position of the glycerol backbone, common products of oxidative attack on cells and circulating lipoproteins are phospholipids that have been peroxidized at their sn-2 position. These peroxy radicals abstract hydrogen to form hydroperoxy phospholipids, may be reduced to the corresponding alcohol, rearrange (2, 3), or fragment to generate a host of oxidatively truncated phospholipids (47).The shortened sn-2 residue of truncated phospholipids, which may also contain a newly introduced polar oxygen function, does not intercalate into the membrane well and is energetically favored to protrude into the aqueous phase, a conformation that disorders phospholipid packing into a bilayer (810). Oxidatively truncated phospholipids are more water soluble than their phospholipid precursors and readily associate with plasma albumin (11), plasma membranes (12), and even traffic into cells to lysosomes (12) or mitochondria (13) depending on the structure of the truncated phospholipid.Phospholipid oxidation products can be cytotoxic (14, 15), and at least some of these are toxic because they initiate the apoptotic process of regulated cell death (13). The manner by which oxidatively truncated phospholipids alter cell viability has been ascribed to solubilization of the plasma membrane (14), adduction of mitochondrial proteins (17), temporary physical distortion of the plasma membrane (18), or activation of acid sphingomyelinase activity that alters plasma membrane microdomains by generating ceramide (15, 19). We found that a common oxidatively truncated phospholipid, containing a 9-carbon azelaoyl fragment derived from fragmentation of sn-2 linoleoyl residues, induces apoptosis by the intrinsic caspase cascade with loss of mitochondrial function and not, apparently, from damage of the plasma membrane (13).Members of the Bcl-2 family modulate mitochondria-dependent apoptosis either by promoting apoptosis (Bid, Bad, and Bax) or obstructing this event (Bcl-2 and Bcl-XL). Aggregation of Bax on the mitochondrial outer membrane forms ion conducting pores and Bcl-XL associates with mitochondrial outer membranes to suppress this Bax activity (20). In contrast, Bid promotes apoptosis after cleavage to truncated Bid, a regulatory event catalyzed by activated caspase 8 (21). Bid, alone among Bcl-2 family members, displays homology to plant lipid transfer proteins and both truncated and full-length Bid will incorporate fluorescent phospholipids, and not the cognate fluorescent fatty acid, into mitochondrial membranes (22).We determined whether mitochondrial integrity or function were directly affected by oxidatively truncated phospholipids, and then whether Bcl-2 family members alter these effects as they do in other, established apoptotic signaling pathways. We find that truncated phospholipids accumulated from the extracellular environment depolarize intracellular mitochondria, that these bilayer challenged phospholipids reversibly interact with mitochondria to continually reduce their transmembrane potential, and that Bcl-2 family members modulate this interaction.  相似文献   

18.
The pathogenesis of nonalcoholic steatohepatitis (NASH), like that of atherosclerosis, involves lipid accumulation, inflammation and fibrosis. Recent studies suggest that oxidized LDL (oxLDL) may be a risk factor for NASH, but oxLDL levels were not directly measured in these studies. The aim of this study was to examine whether there was an association between electronegative LDL [LDL(−)], a mildly oxLDL found in the blood, and the development of NASH using two animal models. Golden Syrian hamsters and C57BL/6 mice were fed a high-fat, high-cholesterol (HFC) diet for 6 or 12 weeks, then liver lipid and histopathology, plasma lipoprotein profile and LDL(−) levels were examined. The HFC-diet-fed hamsters and mice had similar levels of hepatic lipid but different histopathological changes, with microvesicular steatosis, hepatocellular hypertrophy, inflammation and bridging fibrosis in the hamsters, but only in mild steatohepatitis with low inflammatory cell infiltration in the mice. It also resulted in a significant increase in plasma levels of LDL cholesterol and LDL(−) in hamsters, but only a slight increase in mice. Moreover, enlarged Kupffer cells, LDL(−) and accumulation of unesterified cholesterol were detected in the portal area of HFC-diet-fed hamsters, but not HFC-diet-fed mice. An in vitro study showed that LDL(−) from HFC-diet-fed hamsters induced TNF-α secretion in rat Kupffer cell through a LOX-1-dependent pathway. Our results strongly suggest that LDL(−) is one of the underlying causes of hepatic inflammation and plays a critical role in the development of NASH.  相似文献   

19.
Human plasma platelet activating factor acetylhydrolase (pPAF-AH) is a phospholipase A(2) that specifically hydrolyzes the sn-2 ester of platelet activating factor (PAF) and of phospholipids with oxidatively truncated sn-2 fatty acyl chains. pPAF-AH is bound to lipoproteins in vivo, and it binds essentially irreversibly to anionic and zwitterionic phospholipid vesicles in vitro and hydrolyzes PAF and PAF analogues. Substrate hydrolysis also occurs in the absence of vesicles, with a maximum rate reached at the critical micelle concentration. A novel pre-steady-state kinetic analysis with enzyme tightly bound to vesicles and with a substrate that undergoes slow intervesicle exchange establishes that pPAF-AH accesses its substrate from the aqueous phase and thus is not an interfacial enzyme. Such a mechanism readily explains why this enzyme displays dramatic specificity for phospholipids with short sn-2 chains or with medium-length, oxidatively truncated sn-2 chains since a common feature of these lipids is their relatively high water solubility. It also explains why the enzymatic rate drops as the length of the sn-1 chain is increased. pPAF-AH shows broad specificity toward phospholipids with different polar headgroups. Additional results are that PAF undergoes intervesicle exchange on the subminute time scale and it does not undergo transbilayer movement over tens of minutes.  相似文献   

20.
Inflammation is recognized increasingly as having an important role in the pathogenesis of alcoholic liver disease (ALD). Nonetheless, the mechanisms by which alcohol maintains hepatic inflammation are still characterized incompletely. Several studies have demonstrated that ethanol-induced oxidative stress promotes immune responses in ALD by stimulating both humoral and cellular reactions against liver proteins adducted to hydroxyethyl free radicals and several lipid peroxidation products. Moreover, ALD patients have autoantibodies targeting cytochrome P4502E1 and oxidized phospholipids. In both chronic alcohol-fed rats and heavy drinkers, the elevation of IgG against lipid peroxidation-derived antigens is associated with tumor necrosis factor-alpha production and the severity of liver inflammation. On this basis, we propose that allo- and autoimmune reactions associated with oxidative stress might contribute to fueling hepatic inflammation in ALD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号