首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Physiological tremor is an inherent feature of the motor system that is influenced by intrinsic (neuromuscular) and/or extrinsic (task) factors. Given that tremor must be accounted for during the performance of many fine motor skills; there is a requirement to clarify how different factors interact to influence tremor. This study was designed to assess the impact localized fatigue of a single arm and stance position had on bilateral physiological tremor and forearm muscle activity. Results demonstrated that unilateral fatigue produced bilateral increases in tremor and wrist extensor activity. For example, fatigue resulted in increases in extensor activity across both exercised (increased 8–10% MVC) and the non-exercised arm (increased 3–7% MVC). The impact of fatigue was not restricted to changes in tremor/EMG amplitude, with altered hand–finger coupling observed within both arms. Within the exercised arm, cross-correlation values decreased (pre-exercise r = 0.62–0.64; post-exercise r = 0.37–0.43) while coupling increased within the non-exercised arm (pre-exercise r = 0.51–0.55; post-exercise r = 0.62–0.67). While standing posture alone had no significant impact on tremor/EMG dynamics, the tremor and muscle increases seen with fatigue were more pronounced when standing. Together these results demonstrate that the combination of postural and fatigue factors can influence both tremor/EMG outputs and the underlying coordinative coupling dynamics.  相似文献   

2.
In this experiment, hand and forearm vasomotor activity was investigated during localised, but stable heating and cooling of the face, hand and thigh, under open-loop (clamped) conditions. It was hypothesised that facial stimulation would provoke the most potent vascular changes. Nine individuals participated in two normothermic trials (mean body temperature clamp: 36.6 °C; water-perfused suit and climate chamber) and two mildly hyperthermic trials (37.9 °C). Localised heating (+5 °C) and cooling (−5 °C) stimuli were applied to equal surface areas of the face, hand and thigh (perfusion patches: 15 min), while contralateral forearm or hand blood flows (venous-occlusion plethysmography) were measured (separate trials). Thermal sensation and discomfort votes were recorded before and during each thermal stimulation. When hyperthermic, local heating induced more sensitive vascular responses, with the combined thermosensitivity of both limb segments averaging 0.011 mL·100 mL−1·min−1·mmHg−1·°C−1, and 0.005 mL·100 mL−1·min−1·mmHg−1·°C−1 during localised cooling (P<0.05). Inter-site comparisons among the stimulated sites yielded minimal evidence of variations in local thermal sensation, and no differences were observed for vascular conductance (P>0.05). Therefore, regional differences in vasomotor and sensory sensitivity appeared not to exist. When combined with previous observations of sudomotor sensitivity, it seems that, during mild heating and cooling, regional representations within the somatosensory cortex may not translate into meaningful differences in thermal sensation or the central integration of thermoafferent signals. It was concluded that inter-site variations in the cutaneous thermosensitivity of these thermolytic effectors have minimal physiological significance over the ranges investigated thus far.  相似文献   

3.
BackgroundHIFU can achieve PVI, but severe esophageal complications have happened. We analyzed relative position of HIFU balloon catheter (BC) to esophageal temperature (ET) probe and correlated it to ET changes.Methods and ResultsBefore each ablation relative position of HIFU BC to ET probe was recorded in RAO 30° and LAO 40°. We compared ablations where ET at end of ablation was < 38.5°C or ≥ 38.5°C and < 40.0°C or ≥ 40.0°C.A total of 600 images from 311 ablations in 28 patients (18 male, age 63 ± 7 years), were analyzed. ET ≥ 38.5°C was reached when distance from BC to ET probe was: < 20 mm in LAO for RSPV and < 29 mm in LAO for RIPV. For RIPV ET ≥ 38.5°C was reached when angle between BC and ET probe was significantly smaller in LAO and RAO. ET ≥ 40.0°C was reached when distance of BC to ET probe was: < 20 mm in LAO for RIPV, < 14 mm in RAO for RIPV, < 18 mm in RAO for LIPV. ET increased to ≥ 40.0°C when distance from BC to ET probe was significantly longer in LAO for LIPV. For RIPV ET ≥ 40.0°C was reached when angle between BC and ET probe was significantly smaller in LAO.ConclusionsThere is a relationship between distance/angle of HIFU BC to ET probe and ET: shorter distances and smaller angles can cause higher ET.  相似文献   

4.
The aim of this study was to assess differences in physiological tremor amplitude of the hand between the dominant and non-dominant side of right-handed individuals. Mechanical loading of the hand and frequency analysis were used in an attempt to identify the physiological mechanisms involved in observed differences. Seventeen healthy right-handed adults participated in a single session where physiological tremor of the outstretched left and right hands was recorded under different loading conditions (0 g up to 5614 g). Physiological tremor amplitude was quantified through accelerometry and electromyographic (EMG) signals of wrist extensor and flexor muscles were also recorded. The main findings were: ~30% greater amplitude of fluctuations in acceleration for the non-dominant compared with the dominant hand, no difference in the frequency content of acceleration or demodulated EMG signals between dominant and non-dominant sides across all loads, and condition-dependent associations between the amplitude of fluctuations in acceleration and EMG amplitude and frequency content. These associations suggest a potential role of central modulation of neural activity to explain dominance-related differences in physiological tremor amplitude of the hand.  相似文献   

5.
6.
Avoiding the innervation zone (IZ) is important when collecting surface electromyographic data. The purposes of this study were threefold: (1) to examine the precision of two different techniques for expressing IZ location for the biceps brachii, (2) to compare these locations between men and women, and (3) to determine if IZ movement with changes in elbow joint angle is related to different anthropometric measures. Twenty-four subjects (mean ± SD ages = 21.8 ± 3.5 yr) performed isometric contractions of the right forearm flexors at each of three separate elbow joint angles (90°, 120°, and 150° between the arm and forearm). During each contraction, the location of the IZ for the biceps brachii was visually identified using a linear electrode array. These IZ locations were expressed in both absolute (i.e. as a distance (mm) from the acromion process) and relative (i.e. as a percentage of humerus length) terms. The results suggested that the estimations of IZ location were more precise when expressed in relative versus absolute terms, and were generally different for men and women. The shift in IZ location with changes in elbow joint angle was not, owever, related to height, weight, or humerus length.  相似文献   

7.
PurposeAccurate determination of the bifurcation angle and correlation with plaque buildup may lead to the prediction of coronary artery disease (CAD). This work evaluates two techniques to measure bifurcation angles in 3D space using coronary computed tomography angiography (CCTA).Materials and MethodsNine phantoms were fabricated with different bifurcation angles ranging from 55.3° to 134.5°. General X-ray and CCTA were employed to acquire 2D and 3D images of the bifurcation phantoms, respectively. Multiplanar reformation (MPR) and volume rendering technique (VRT) were used to measure the bifurcation angle between the left anterior descending (LAD) and left circumflex arteries (LCx). The measured angles were compared with the true values to determine the accuracy of each measurement technique. Inter-observer variability was evaluated. The two techniques were further applied on 50 clinical CCTA cases to verify its clinical value.ResultsIn the phantom setting, the mean absolute differences calculated between the true and measured angles by MPR and VRT were 2.4° ± 2.2° and 3.8° ± 2.9°, respectively. Strong correlation was found between the true and measured bifurcation angles. Furthermore, no significant differences were found between the bifurcation angles measured using either technique. In clinical settings, large difference of 12.0° ± 10.6° was found between the two techniques.ConclusionIn the phantom setting, both techniques demonstrated a significant correlation to the true bifurcation angle. Despite the lack of agreement of the two techniques in the clinical context, our findings in phantoms suggest that MPR should be preferred to VRT for the measurement of coronary bifurcation angle by CCTA.  相似文献   

8.
IntroductionCutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles.Material and methods13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4 × 2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α  0.05 a priori.ResultsAt all cutting angles, males showed greater knee flexion angles than females (p < 0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion −42.53° ± 8.95°, females decreased their knee flexion angle from −40.6° ± 7.2° when cutting at 45° to −36.81° ± 9.10° when cutting at 90°, 135° and 180° (p < 0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p < 0.05). At 90°, 135° and 180°, males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cutting angles and then stabilized compared to the 45° cutting angle (p < 0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p < 0.01).ConclusionIt can be concluded that different cutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention.  相似文献   

9.
BackgroundNociceptive withdrawal reflexes (NWR) are subject to supraspinal modulation. Therefore, awareness about a noxious stimulation may affect its characteristics. The goal of this study was to investigate the effect of different degrees of awareness on the NWR.MethodEight subjects performed back and forth hand movements from a common starting point towards four visual targets during which NWR was evoked when subjects were either unaware or aware of a noxious stimulation (unaware-NWR and aware-NWR). For the comparison between the NWR under both conditions, onset latencies and kinematic variables were computed respectively from the recorded Biceps Brachii EMG and from the spatial coordinates of hand reflective markers.ResultsThe onset latency of unaware-NWR (mean ± SD 73.9 ± 13 ms) was significantly shorter than that of the aware-NWR (91.1 ± 27 ms, p < 0.05). The total duration of the muscular activation was shorter in unaware-NWR than in aware-NWR. The slopes of the tangential velocity–time curves were steeper for unaware-NWR than for aware-NWR (p = 0.057).ConclusionsThe results suggest that supraspinal regulation of NWR under different degrees of awareness involves the re-parameterization of selected spatiotemporal aspects of a pre-structured motor response.  相似文献   

10.
The transfer of mussels from field to laboratory, or transplantation between clean and contaminated field settings, is a common protocol in ecotoxicology. However, collection and transport of mussels could lead to stress that may impact biomarker responses, and thus confound interpretation of results. Physiological responses (clearance rate, absorption efficiency, excretion rate, respiration rate and scope-for-growth) of green-lipped mussels (Perna canaliculus) exposed to four different transportation protocols were investigated. These protocols included immersion in site seawater (SSW), immersion in artificial seawater (ASW), and emersion (aerial transport; EMS) at two temperatures (15 °C and 5 °C). Physiological measurements were conducted after a simulated 24 h “transport” phase and a 48 h “recovery” phase. Clearance rates were significantly inhibited by the EMS 5 °C and ASW protocols relative to SSW treatment, although the clearance rate of the latter recovered after 48 h. A similar pattern was observed for excretion and respiration rates for ASW. Decreased excretion rates for EMS 15 °C and respiration rates for EMS 5 °C were also recorded relative to values for SSW following “recovery”. Negative scope-for-growth was observed for all treatments except EMS 15 °C. These data suggest transport emersed at ambient air temperatures is the best method to maintain physiological health of green-lipped mussels.  相似文献   

11.
PurposePrevious studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions.MethodsTen young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15°, 30°, 60°, 120°, 180° and 240°/s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude.ResultsAntagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0 ± 7.9% at MVC to 16.3 ± 8.9% at 240°/s) with respect to non-players (from 27.7 ± 19.7% at MVC to 38.7 ± 17.6% at 240°/s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles.ConclusionsTennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.  相似文献   

12.
Variations in handgrip force influences shoulder muscle activity, and this effect is dependent upon upper limb position. Previous work suggests that neural coupling between proximal and distal muscles with changes in joint position is a possible mechanism but these studies tend to use artificially constrained postures that do not reflect activities of daily living. The purpose of this study was to examine the effects of upper limb posture on corticospinal excitability to the forearm muscles during workplace relevant arm positions. Motor evoked potentials (MEPs) were elicited in four forearm muscles via transcranial magnetic stimulation at six arm positions (45°, 90° and 120° of humeral elevation in both the flexion and abduction planes). MEPs were delivered as stimulus–response curves (SRCs) at rest and at constant intensity during two gripping tasks. Boltzmann plateau levels were smaller for the flexor carpi radialis in flexion at 45° versus 90° (p = 0.0008). Extensor carpi radialis had a greater plateau during flexion than abduction (p = 0.0042). Corticospinal excitability to the forearm muscles were influenced by upper limb posture during both the resting and gripping conditions. This provides further evidence that upper limb movements are controlled as a whole rather than segmentally and is relevant for workplace design considerations.  相似文献   

13.
PurposePancreatic tumor treatment dose distribution variations associated with supine and prone patient positioning were evaluated.MethodsA total of 33 patients with pancreatic tumors who underwent CT in the supine and prone positions were analyzed retrospectively. Gross tumor volume (GTV), planning target volume (PTV), and organs at risk (OARs) (duodenum and stomach) were contoured. The prescribed dose of 55.2 Gy (RBE) was planned from four beam angles (0°, 90°, 180°, and 270°). Patient collimator and compensating boli were designed for each field. Dose distributions were calculated for each field in the supine and prone positions. To improve dose distribution, patient positioning was selected from supine or prone for each beam field.ResultsCompared with conventional beam angle and patient positioning, D2cc of 1st-2nd portion of duodenum (D1-D2), 3rd-4th portion of duodenum (D3-D4), and stomach could be reduced to a maximum of 6.4 Gy (RBE), 3.5 Gy (RBE), and 4.5 Gy (RBE) by selection of patient positioning. V10 of D1-D2, D3-D4, and stomach could be reduced to a maximum of 7.2 cc, 11.3 cc, and 11.5 cc, respectively. D95 of GTV and PTV were improved to a maximum of 6.9% and 3.7% of the prescribed dose, respectively.ConclusionsOptimization of patient positioning for each beam angle in treatment planning has the potential to reduce OARs dose maintaining tumor dose in pancreatic treatment.  相似文献   

14.
Arteriovenous anastomoses (AVA) in acral skin (palms and soles) have a huge capacity to shunt blood directly from the arteries to the superficial venous plexus of the extremities. We hypothesized that acral skin, which supplies blood to the superficial venous plexus, has a stronger influence on blood flow adjustments during cooling in thermoneutral subjects than does non-acral skin. Thirteen healthy subjects were exposed to stepwise cooling from 32 °C to 25 °C and 17 °C in a climate chamber. Laser Doppler flux and skin temperature were measured simultaneously from the left and right third finger pulp and bilateral upper arm skin. Coherence and correlation analyses were performed of short-term fluctuations at each temperature interval. The flux from finger pulps showed the synchronous spontaneous fluctuations characteristic of skin areas containing AVAs. Fluctuation frequency, amplitude and synchronicity were all higher at 25 °C than at 32 °C and 17 °C (p<0.02). Bilateral flux from the upper arm skin showed an irregular, asynchronous vasomotor pattern with small amplitudes which were independent of ambient temperature. At 32 °C, ipsilateral median flux values from the right arm (95% confidence intervals) were 492 arbitrary units (au) (417, 537) in finger pulp and 43 au (35, 60) in upper arm skin. Flux values gradually decreased in finger pulp to 246 au (109, 363) at 25 °C, before an abrupt fall occurred at a median room temperature of 24 °C, resulting in a flux value of 79 au (31, 116) at 17 °C. In the upper arm skin a gradual fall throughout the cooling period to 21 au (13, 27) at 17 °C was observed. The fact that the response of blood flow to ambient cooling is stronger in acral skin than in non-acral skin suggests that AVAs have a greater capacity to adjust blood flow in thermoneutral zone than arterioles in non-acral skin.  相似文献   

15.
16.
Through examining tremor dynamics, the study sought to investigate the effects of load characteristics upon control strategies in patients with Parkinson’s disease (PD) during postural holding. Eleven untreated patients and eleven healthy adults conducted a static pointing task with an outstretched arm, with a manipulated load of 100 g on the index finger. Oscillatory activities in the upper limb were contrasted between the unloaded and loaded conditions. The results showed that PD patients demonstrated abnormal modulation of tremor amplitude in the finger, hand, and upper arm in the opposing load condition. When the load was applied, the PD patients presented a nearly opposite pattern of tremor coupling between limb segments, contrary to the normal release and enhancement of tremor coupling in the finger–hand and hand–forearm complexes, respectively. Principal component analysis suggested that normal postural tremors could be explained by a load-dependent component that had high communality with tremors of the distal segments. In contrast, major principal components of PD tremor were invariant to load addition. Multi-segment tremors in PD were atypically organized during loaded postural holding, signifying that coordinative control of the upper limb in the patients was impaired in the absence of exploitation of a germane distal strategy against inertial perturbation.  相似文献   

17.
AimTo compare the angular changes of the third molars relative to the occlusal plane and to the second molar long axis in extraction group and compare these changes with a non extraction group.Materials and methodsThe study included pre and post treatment panoramic radiograph records of 90 subjects treated by first premolar extractions and 90 subjects who had been treated with non extraction orthodontic therapy (n = 90). Two angular variables were measured. Firstly, the angle between the long axis of the third molar and the occlusal plane (M3–OP) and secondly, the angle between the long axis of the third molar and the long axis of the second molar (M3–M2). Data were analyzed by paired and student’s t-test.ResultThe analyzed data to assess the changes in the third molar angulation from pretreatment to post treatment did not vary significantly in both the groups (p < 0.05). Both the groups showed decreased angular values. The M3–OP angular difference was (−7.3 ± 2.45) in extraction group as compared to (−5.85 ± 1.77) in non extraction group. The M3–M2 angular difference of (−4.26 ± 3.11) in extraction group and (−2.98 ± 1.74) in non-extraction group was observed.ConclusionExtraction of premolars did not demonstrate considerable changes on the angulation of the third molars. The factors other than premolar extractions may influence the angulation of the third molars.  相似文献   

18.
《Médecine Nucléaire》2007,31(1):16-28
The cine Phase-Contrast Magnetic Resonance (PCMR) sequence is the only noninvasive technique for the study of cerebrospinal fluid (CSF) oscillations. It can provide CSF and blood flow measurements throughout the cardiac cycle. To study cerebral hydro-hemodynamic, models have been developed; nevertheless the majority of these models did not take into account the CSF oscillations. The objective of this study was to establish reference values for cerebral hydro-hemodynamic and propose a new electrical model of the brain dynamics.Material and methodsCSF and blood flows were measured in 19 control subjects by PCMR imaging. Dynamic flow images were analyzed on dedicated software to reconstruct the flow curves during the cardiac cycle. An electrical analogue was realized. The inputs of the model were fed by PCMR arterial and venous flows to simulate CSF oscillations. The simulated CSF oscillations were compared to the measured CSF oscillations to validate the model.ResultsThe key parameters of the CSF and blood flow curves were obtained, e.g. total cerebral blood flow was 688 ± 115 mL/min, ventricular CSF oscillatory volume was 0.05 ± 0.02 mL/cardiac cycle, and the subarachnoid CSF oscillatory volume was 0.55 ± 0.15 mL/cardiac cycle. A close agreement was found between measured and simulated cerebral CSF oscillations.ConclusionThis study established the main values characterizing cerebral hydrodynamics in a control population. It provided a better understanding of the mechanisms of intracranial volumes regulation during the cardiac cycle. Our results are now used in clinical practice and the model proposed is effective to study cerebral hydro-hemodynamic.  相似文献   

19.
ObjectiveTo analyze the effect of gender on median nerve (MN) and ulnar nerve (UN) sensorial responses over ring finger (RF).Materials and methodsResults of individuals admitted to our ENMG laboratory between June 2011 and March 2012 for nerve conduction studies (NCSs) were retrospectively analyzed. Sensory NCSs were performed by standard antidromic technique.ResultsTotally, 112 normal recordings belong to 100 patients were included. Mean antidromic sensory conduction velocity of MNs (wrist-to-second finger) or UNs (wrist-to-fifth finger) was not different between two genders. Mean sensory nerve action potential (SNAP) amplitude of MN from second finger was also not different between two genders. However, mean SNAP amplitude of UN from fifth finger was higher in females. In RF’s sensorial response studies; mean peak latency of MN was similar between females and males (3.05 ± 0.25 ms vs. 3.14 ± 0.29 ms, p = 0.111), whereas one of UN was shorter in females (2.86 ± 0.22 ms vs. 3.04 ± 0.31 ms, p = 0.001). MN to UN latency difference to RF was greater in females than males (0.19 ± 0.15 ms vs. 0.10 ± 0.16 ms, p = 0.007). Mean SNAP amplitude of MN and UN were both higher in females than males (17.9 ± 7.1 μV vs. 14.1 ± 5.5 μV, p = 0.011 and 18.5 ± 8.0 μV vs. 12.9 ± 6.1 μV, p = 0.0009, respectively). All data of NCSs were re-analyzed after adjustment for age, and obtained findings regarding effect of aging are also included.ConclusionGender has a prominent effect on RF’s sensorial responses. Normative values regarding them should be prepared with adjustment for gender.  相似文献   

20.
ObjectiveAcute rises in pulmonary artery pressures following complex cardiac surgery are associated with high morbidity and mortality. We hypothesised that periods of deep hypothermia predispose to elevated pulmonary pressures upon rewarming. We investigated the effect of this hypothermic preconditioning on isolated human pulmonary arteries and isolated perfused lungs.MethodsIsometric tension was measured in human pulmonary artery rings (n=24). We assessed the constriction and dilation of these arteries at 37 °C and 17 °C. Isolated perfused human lung models consisted of lobes ventilated via a bronchial cannula and perfused with Krebs via a pulmonary artery cannula. Bronchial and pulmonary artery pressures were recorded. We investigated the effect of temperature using a heat exchanger.ResultsRewarming from 17 °C to 37 °C caused a 1.3 fold increase in resting tension (p<0.05). Arteries constricted 8.6 times greater to 30 nM KCl, constricted 17 times greater to 1 nM Endothelin-1 and dilated 30.3 times greater to 100 μM SNP at 37 °C than at 17 °C (p<0.005). No difference was observed in the responses of arteries originally maintained at 37 °C compared to those arteries maintained at 17 °C and rewarmed to 37 °C. Hypothermia blunted the increase in pulmonary artery pressures to stimulants such as potassium chloride as well as to H-R but did not precondition arteries to higher pulmonary artery pressures upon re-warming.ConclusionsDeep hypothermia reduces the responsiveness of human pulmonary arteries but does not, however, precondition an exaggerated response to vasoactive agents upon re-warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号