首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. Of all patients with ALS, approximately 5%-10% of them are familial and most of the others are sporadic. Superoxide dismutase 1 (SOD1) gene mutations are shown to be associated with about 20% of familial ALS (FALS) patients. FALS is neuropathologically classified into two subtypes: classical FALS in which degeneration is restricted to only motor neurons and FALS which is characterized by the degeneration of the posterior column in addition to the lesion of the motor neuron system. The neuronal Lewy body-like hyaline inclusion (LBHI) is a characteristic neuropathological marker of mutant SOD1-linked FALS with posterior column involvement. Inclusions similar to the neuronal LBHIs have been discovered in astrocytes in certain patients with FALS exhibiting SOD1 gene mutations. The purpose of this review is to discuss the novel neuropathological significance of the astrocytic hyaline inclusions (Ast-HIs) and neuronal LBHIs in brain tissues from individuals with the posterior-column-involvement-type FALS with SOD1 gene mutations. In hematoxylin and eosin preparations, both Ast-HIs and neuronal LBHIs are eosinophilic inclusions and sometimes show eosinophilic cores with paler peripheral halos. Immunohistochemically, both inclusions are intensely positive for SOD1. At the ultrastructural level, both inclusions consist of approximately 15-25 nm-sized granule-coated fibrils and granular materials. Immunoelectron microscopically, these abnormal granule-coated fibrils and granular materials are positive for SOD1. Therefore, the FALS disease process originating from SOD1 gene mutations occurs in astrocytes as well as neurons and is involved in the formation of both inclusions.  相似文献   

2.
Formation of misfolded protein aggregates is a remarkable hallmark of various neurodegenerative diseases including Alzheimer disease, Parkinson disease, Huntington disease, prion encephalopathies, and amyotrophic lateral sclerosis (ALS). Superoxide dismutase 1 (SOD1) immunoreactive inclusions have been found in the spinal cord of ALS animal models and patients, implicating the close involvement of SOD1 aggregates in ALS pathogenesis. Here we examined the molecular mechanism of aggregate formation of ALS-related SOD1 mutants in vitro. We found that long-chain unsaturated fatty acids (FAs) promoted aggregate formation of SOD1 mutants in both dose- and time-dependent manners. Metal-deficient SOD1s, wild-type, and mutants were highly oligomerized compared with holo-SOD1s by incubation in the presence of unsaturated FAs. Oligomerization of SOD1 is closely associated with its structural instability. Heat-treated holo-SOD1 mutants were readily oligomerized by the addition of unsaturated FAs, whereas wild-type SOD1 was not. The monounsaturated FA, oleic acid, directly bound to SOD1 and was characterized by a solid-phase FA binding assay using oleate-Sepharose. The FA binding characteristics were closely correlated with the oligomerization propensity of SOD1 proteins, which indicates that FA binding may change SOD1 conformation in a way that favors the formation of aggregates. High molecular mass aggregates of SOD1 induced by FAs have a granular morphology and show significant cytotoxicity. These findings suggest that SOD1 mutants gain FA binding abilities based on their structural instability and form cytotoxic granular aggregates.  相似文献   

3.
Several of the superoxide dismutase-1 (SOD1) mutations linked to amyotrophic lateral sclerosis (ALS) lead to synthesis of structurally defective molecules, suggesting that any cytotoxic conformational species common for all mutations should be misfolded. SOD1 can be secreted and evidence from ALS model systems suggests that extracellular SOD1 may be involved in cytotoxicity. Three ELISAs specifically reacting with different sequence segments in misfolded SOD1 species were used for analysis of CSF from 38 neurological controls and from 96 ALS patients, 57 of whom were sporadic cases and 39 familial, including 22 patients carrying SOD1 mutations. Misfolded SOD1 was found in all samples. There were, however, no significant differences between patients with and without mutations, and between all the ALS patients and the controls. The estimated concentration of misfolded SOD1 in the interstitium of the CNS is a 1000 times lower than that required for appreciable cytotoxicity in model systems. The results argue against a direct cytotoxic role of extracellular misfolded SOD1 in ALS. Misfolded SOD1 in CSF cannot be used as a biomarker of ALS in patients with and without mutations in the enzyme.  相似文献   

4.
Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled with stress granule (SG) marker proteins. Whether TDP-43 inclusions contain SG markers is currently still debated. We determined the requirements for SG recruitment of FUS and TDP-43 and found that cytoplasmic mislocalization is a common prerequisite for SG recruitment of FUS and TDP-43. For FUS, the arginine-glycine-glycine zinc finger domain, which is the protein's main RNA binding domain, is most important for SG recruitment, whereas the glycine-rich domain and RNA recognition motif (RRM) domain have a minor contribution and the glutamine-rich domain is dispensable. For TDP-43, both the RRM1 and the C-terminal glycine-rich domain are required for SG localization. ALS-associated point mutations located in the glycine-rich domain of TDP-43 do not affect SG recruitment. Interestingly, a 25-kDa C-terminal fragment of TDP-43, which is enriched in FTLD/ALS cortical inclusions but not spinal cord inclusions, fails to be recruited into SG. Consistently, inclusions in the cortex of FTLD patients, which are enriched for C-terminal fragments, are not co-labeled with the SG marker poly(A)-binding protein 1 (PABP-1), whereas inclusions in spinal cord, which contain full-length TDP-43, are frequently positive for this marker protein.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease which currently has no cure. Research using rodent ALS models transgenic for mutant superoxide dismutase 1 (SOD1) has implicated that glial–neuronal interactions play a major role in the destruction of motor neurons, but the generality of this mechanism is not clear as SOD1 mutations only account for less than 2% of all ALS cases. Recently, this hypothesis was backed up by observation of similar effects using astrocytes derived from post‐mortem spinal cord tissue of ALS patients which did not carry SOD1 mutations. However, such necropsy samples may not be easy to obtain and may not always yield viable cell cultures. Here, we have analysed olfactory mucosa (OM) cells, which can be easily isolated from living ALS patients. Disease‐specific changes observed when ALS OM cells were co‐cultured with human spinal cord neurons included decreased neuronal viability, aberrant neuronal morphology and altered glial inflammatory responses. Our results show the potential of OM cells as new cell models for ALS.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder resulting from the degeneration of motor neurons in the cerebral cortex, brainstem, and spinal cord. The cytopathological hallmark in the remaining motor neurons of ALS is the presence of ubiquitylated inclusions consisting of insoluble protein aggregates. In this paper we report that Dorfin, a RING finger-type E3 ubiquitin ligase, is predominantly localized in the inclusion bodies of familial ALS with a copper/zinc superoxide dismutase (SOD1) mutation as well as sporadic ALS. Dorfin physically bound and ubiquitylated various SOD1 mutants derived from familial ALS patients and enhanced their degradation, but it had no effect on the stability of the wild-type SOD1. The overexpression of Dorfin protected against the toxic effects of mutant SOD1 on neural cells and reduced SOD1 inclusions. Our results indicate that Dorfin protects neurons by recognizing and then ubiquitylating mutant SOD1 proteins followed by targeting them for proteasomal degradation.  相似文献   

7.
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS) through an unknown gain-of-function mechanism. Mutant SOD1 aggregation may be the toxic property. In fact, proteinaceous inclusions rich in mutant SOD1 have been found in tissues from the familial form of ALS patients and in mutant SOD1 animals, before disease onset. However, very little is known of the constituents and mechanism of formation of aggregates in ALS. We and others have shown that there is a progressive accumulation of detergent-insoluble mutant SOD1 in the spinal cord of G93A SOD1 mice. To investigate the mechanism of SOD1 aggregation, we characterized by proteome technologies SOD1 isoforms in a Triton X-100-insoluble fraction of spinal cord from G93A SOD1 mice at different stages of the disease. This showed that at symptomatic stages of the disease, part of the insoluble SOD1 is unambiguously mono- and oligoubiquitinated, in spinal cord and not in hippocampus, and that ubiquitin branches at Lys(48), the major signal for proteasome degradation. At presymptomatic stages of the disease, only insoluble unmodified SOD1 is recovered. Partial ubiquitination of SOD1-rich inclusions was also confirmed by immunohistochemical and electron microscopy analysis of lumbar spinal cord sections from symptomatic G93A SOD1 mice. On the basis of these results, we propose that ubiquitination occurs only after SOD1 aggregation and that oligoubiquitination may underline alternative mechanisms in disease pathogenesis.  相似文献   

8.
Molecular modeling is a promising method for assessing protein structures that is capable of presenting an energetically beneficial protein conformation with atomic precision. This method is of great importance for studying molecular interactions and confirming the pathogenic significance of the changes in protein structures caused by particular mutations. In this study, we used molecular modeling to assess mutations in the SOD1 gene in patients with amyotrophic lateral sclerosis (ALS), a severe neurodegenerative disorder characterized by the loss of spinal and cerebral motor neurons. The product of SOD1 is a cytosolic dimeric enzyme Cu/Zn superoxide dismutase (SOD1) responsible for the detoxification of cellular superoxide radicals. We showed that all eight revealed coding-point mutations of the gene led to moderate or significant changes in SOD1 protein energy. The mutation His49Arg increased protein energy, and the reconstruction of the respective model indicated the spatial destabilization of the molecule and abnormal interactions with the metal ion inside the active center. Conversely, the other seven mutations (Gly17Ala, Leu85Val, Asn87Ser, Asp91Ala, Ser106Leu, Glu134Gly, and Leu145Phe) led to a decrease in protein energy and an increase in the spatial stability of SOD 1, which is usually accompanied by an increased tendency for the inert mutant molecule to misfold and demonstrate cellular aggregation. Therefore, the results of the in silico analysis of the SOD1 gene mutations confirms that ALS belongs to the class of the so-called conformational diseases of the central nervous system, a characteristic feature of which is the formation of cytotoxic, insoluble protein inclusions in neurons.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by death of motor neurons leading to muscle wasting, paralysis, and death, usually within 2–3 years of symptom onset. The causes of ALS are not completely understood, and the neurodegenerative processes involved in disease progression are diverse and complex. There is substantial evidence implicating oxidative stress as a central mechanism by which motor neuron death occurs, including elevated markers of oxidative damage in ALS patient spinal cord and cerebrospinal fluid and mutations in the antioxidant enzyme superoxide dismutase 1 (SOD1) causing approximately 20% of familial ALS cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration has not been defined with certainty, and the ultimate trigger for increased oxidative stress in non-SOD1 cases remains unclear. Although some antioxidants have shown potential beneficial effects in animal models, human clinical trials of antioxidant therapies have so far been disappointing. Here, the evidence implicating oxidative stress in ALS pathogenesis is reviewed, along with how oxidative damage triggers or exacerbates other neurodegenerative processes, and we review the trials of a variety of antioxidants as potential therapies for ALS.  相似文献   

11.
Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by loss of motor neurons resulting in progressive paralysis. To date, more than 140 different mutations in the gene encoding CuZn-superoxide dismutase (SOD1) have been associated with ALS. Several transgenic murine models exist in which various mutant SOD1s are expressed. We used DIGE to analyze the changes in the spinal cord proteome induced by expression of the unstable SOD1 truncation mutant G127insTGGG (G127X) in mice. Unlike mutants used in most other models, G127X lacks SOD activity and is present at low levels, thus reducing the risk of overexpression artifacts. The mice were analyzed at their peak body weights just before onset of symptoms. Variable importance plot analysis showed that 420 of 1,800 detected protein spots contributed significantly to the differences between the groups. By MALDI-TOF MS analysis, 54 differentially regulated proteins were identified. One spot was found to be a covalently linked mutant SOD1 dimer, apparently analogous to SOD1-immunoreactive bands migrating at double the molecular weight of SOD1 monomers previously detected in humans and mice carrying mutant SOD1s and in sporadic ALS cases. Analyses of affected functional pathways and the subcellular representation of alterations suggest that the toxicity exerted by mutant SODs induces oxidative stress and affects mitochondria, cellular assembly/organization, and protein degradation.Amyotrophic lateral sclerosis (ALS)1 is a devastating neurodegenerative disease characterized by loss of motor neurons in the motor cortex, the brainstem, and the spinal cord. This results in progressive muscular atrophy, and the patients usually succumb to respiratory failure within a few years. About 10% of ALS cases are familial (1), and in some patients the disease is linked to mutations in the CuZn-superoxide dismutase (SOD1) gene (2). SOD1 is a ubiquitously expressed antioxidant enzyme. Overall about 6% of all cases with ALS show SOD1 mutations, and more than 140 such mutations have been identified (3). The mutations confer a cytotoxic gain of function of unknown character to the enzyme (4, 5). ALS caused by mutant SOD1s shows the same spectrum of disease phenotypes as is seen in sporadic cases lacking such mutations. This suggests that the pathogenesis of ALS induced by SOD1 mutations should show significant similarities with that in sporadic disease, e.g. similar pathogenic protein alterations.ALS has been modeled in mice via transgenic overexpression of mutant SOD1s (58). To cause disease within the short lifespan of a mouse, the mutant SOD1s have to be expressed at rates around 25-fold higher than the rate of expression of the endogenous murine enzyme (9). Mostly structurally stable mutants have been used, resulting in up to 10-fold increases in SOD activity and 20-fold increases in SOD1 protein levels in the CNS that may cause overexpression artifacts. Overloading of mitochondria with mutant SOD1s and vacuolization have been observed in such models (10).To explore ALS pathogenesis, we studied changes in the proteome of spinal cords of SOD1 transgenic mice using DIGE. To reduce the risk of overexpression artifacts, we used mice that express the unstable human SOD1 (hSOD1) truncation mutant G127insTGGG (G127X) (7). These mice develop an aggressive form of the disease, which is of short duration, despite the fact that the mutant lacks SOD activity and the fact that the level of G127X hSOD1 protein is less than half that of the endogenous murine SOD1. The mice were studied at their peak body weights just before development of paralytic symptoms. Here we present the identity of and discuss the possible significance of 53 proteins found to be differentially regulated in ALS transgenic mice.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.  相似文献   

14.

Background and Purpose

Cu/Zn superoxide dismutase (SOD1) is a major component of Lewy body-like hyaline inclusion (LBHI) found in the postmortem tissue of SOD1-linked familial amyotrophic lateral sclerosis (FALS) patients. In our recent studies, 14-3-3 proteins have been found in the ubiquitinated inclusions inside the anterior horn cells of spinal cords with sporadic amyotrophic lateral sclerosis (ALS). To further investigate the role of 14-3-3 proteins in ALS, we performed immunohistochemical analysis of 14-3-3 proteins and compared their distributions with those of SOD1 in FALS patients and SOD1-overexpressing mice.

Methods

We examined the postmortem brains and the spinal cords of three FALS cases (A4V SOD1 mutant). Transgenic mice expressing the G93A mutant human SOD1 (mutant SOD1-Tg mice), transgenic mice expressing the wild-type human SOD1 (wild-type SOD1-Tg mice), and non-Tg wild-type mice were also subjected to the immunohistochemical analysis.

Results

In all the FALS patients, LBHIs were observed in the cytoplasm of the anterior horn cells, and these inclusions were immunopositive intensely for pan 14-3-3, 14-3-3β, and 14-3-3γ. In the mutant SOD1-Tg mice, a high degree of immunoreactivity for misfolded SOD1 (C4F6) was observed in the cytoplasm, with an even greater degree of immunoreactivity present in the cytoplasmic aggregates of the anterior horn cells in the lumbar spinal cord. Furthermore, we have found increased 14-3-3β and 14-3-3γ immunoreactivities in the mutant SOD1-Tg mice. Double immunofluorescent staining showed that C4F6 and 14-3-3 proteins were partially co-localized in the spinal cord with FALS and the mutant SOD1-Tg mice. In comparison, the wild-type SOD1-Tg and non-Tg wild-type mice showed no or faint immunoreactivity for C4F6 and 14-3-3 proteins (pan 14-3-3, 14-3-3β, and 14-3-3γ) in any neuronal compartments.

Discussion

These results suggest that 14-3-3 proteins may be associated with the formation of SOD1-containing inclusions, in FALS patients and the mutant SOD1-Tg mice.  相似文献   

15.
Mutant superoxide dismutase-1 (SOD1) has an unidentified toxic property that provokes ALS. Several ALS-linked SOD1 mutations cause long C-terminal truncations, which suggests that common cytotoxic SOD1 conformational species should be misfolded and that the C-terminal end cannot be involved. The cytotoxicity may arise from interaction of cellular proteins with misfolded SOD1 species. Here we specifically immunocaptured misfolded SOD1 by the C-terminal end, from extracts of spinal cords from transgenic ALS model mice. Associated proteins were identified with proteomic techniques. Two transgenic models expressing SOD1s with contrasting molecular properties were examined: the stable G93A mutant, which is abundant in the spinal cord with only a tiny subfraction misfolded, and the scarce disordered truncation mutant G127insTGGG. For comparison, proteins in spinal cord extracts with affinity for immobilized apo G93A mutant SOD1 were determined. Two-dimensional gel patterns with a limited number of bound proteins were found, which were similar for the two SOD1 mutants. Apart from neurofilament light, the proteins identified were all chaperones and by far most abundant was Hsc70. The immobilized apo G93A SOD1, which would populate a variety of conformations, was found to bind to a considerable number of additional proteins. A substantial proportion of the misfolded SOD1 in the spinal cord extracts appeared to be chaperone-associated. Still, only about 1% of the Hsc70 appeared to be associated with misfolded SOD1. The results argue against the notion that chaperone depletion is involved in ALS pathogenesis in the transgenic models and in humans carrying SOD1 mutations.  相似文献   

16.
Abstract: Autosomal dominant familial amyotrophic lateral sclerosis (FALS) is associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Previous studies have implicated the involvement of metabolic dysfunction in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined SOD activity and mitochondrial oxidative phosphorylation enzyme activities in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Cytosolic SOD activity, predominantly Cu/Zn SOD, was decreased ∼50% in all regions in FALS patients with SOD mutations but was not significantly altered in other patient groups. Marked increases in complex I and II–III activities were seen in FALS patients with SOD mutations but not in SALS patients. We also measured electron transport chain enzyme activities in a transgenic mouse model of FALS. Complex I activity was significantly increased in the forebrain of 60-day-old G93A transgenic mice overexpressing human mutant SOD1, relative to levels in transgenic wild-type animals, supporting the hypothesis that the motor neuron disorder associated with SOD1 mutations involves a defect in mitochondrial energy metabolism.  相似文献   

17.
Mutations in the cytoplasmic Cu/Zn superoxide dismutase (SOD1) gene on human chromosome 21q22.1 cause 10-20% of familial amyotrophic lateral sclerosis (ALS) cases. The expression of the ALS phenotype in mice carrying the murine G86R SOD1 mutation is highly dependent upon the mouse genetic background. This is similar to the phenotypic variation observed in ALS patients containing identical SOD1 mutations. In the FVB/N background, mice expressing mG86R SOD1 develop an ALS phenotype at approximately 100 days. However, when these mice were bred into a mixed background of C57Bl6/129Sv, the onset of the ALS phenotype was delayed (143 days to >2 years). Using 129 polymorphic autosomal markers in a whole genome scan, we have identified a major genetic modifier locus with a maximum lod score of 5.07 on mouse chromosome 13 between D13mit36 and D13mit76. This 5- to 8-cM interval contains the spinal muscular atrophy (SMA)-associated gene Smn (survival motor neuron) and seven copies of Naip (neuronal apoptosis inhibitory protein), suggesting a potential link between SMA and ALS.  相似文献   

18.

Background

Amyotrophic lateral sclerosis (ALS) is incurable and characterized by progressive paralysis of the muscles of the limbs, speech and swallowing, and respiration due to the progressive degeneration of voluntary motor neurons. Clinically indistinguishable ALS can be caused by genetic mutations of Cu/Zn superoxide dismutase (SOD1), TAR-DNA binding protein 43 (TDP43), or fused in sarcoma/translocated in liposarcoma (FUS/TLS), or can occur in the absence of known mutation as sporadic disease. In this study, we tested the hypothesis that FUS/TLS and TDP43 gain new pathogenic functions upon aberrant accumulation in the cytosol that directly or indirectly include misfolding of SOD1.

Methodology/Principal Findings

Patient spinal cord necropsy immunohistochemistry with SOD1 misfolding-specific antibodies revealed misfolded SOD1 in perikarya and motor axons of SOD1-familial ALS (SOD1-FALS), and in motor axons of R521C-FUS FALS and sporadic ALS (SALS) with cytoplasmic TDP43 inclusions. SOD1 misfolding and oxidation was also detected using immunocytochemistry and quantitative immunoprecipitation of human neuroblastoma SH-SY5Y cells as well as cultured murine spinal neural cells transgenic for human wtSOD1, which were transiently transfected with human cytosolic mutant FUS or TDP43, or wtTDP43.

Conclusion/Significance

We conclude that cytosolic mislocalization of FUS or TDP43 in vitro and ALS in vivo may kindle wtSOD1 misfolding in non-SOD1 FALS and SALS. The lack of immunohistochemical compartmental co-localization of misfolded SOD1 with cytosolic TDP43 or FUS suggests an indirect induction of SOD1 misfolding followed by propagation through template directed misfolding beyond its site of inception. The identification of a final common pathway in the molecular pathogenesis of ALS provides a treatment target for this devastating disease.  相似文献   

19.
Cyclooxygenase-2 (COX-2) is a key molecule in the inflammatory pathway in amyotrophic lateral sclerosis (ALS). Cytosolic phospholipase A (cPLA2) is an important enzyme providing substrate for cyclooxygenases. We therefore examined cPLA2 expression in human ALS and mutant Cu/Zn superoxide dismutase (SOD1) transgenic mice and its relation to COX-2. Immunohistochemistry and real-time RT-PCR revealed elevated cPLA2 protein and its mRNA levels in the lumbar spinal cord of mutant SOD1 mice. COX-2 immunoreactivity was increased in lumbar spinal cord sections from both familial ALS (FALS) and sporadic ALS (SALS) as compared to controls, and cPLA2 immunoreactivity was increased in a patient with FALS. Oral administration of the non-selective cyclooxygenase (COX) inhibitor, sulindac, extended the survival (by 10%) of G93A SOD1 mice as compared to littermate controls. Sulindac, as well as the selective COX-2 inhibitors, rofecoxib and celecoxib reduced cPLA2 immunoreactivity in the lumbar spinal cord of G93A transgenic mice. Sulindac treatment preserved motor neurons, and reduced microglial activation and astrocytosis, in the spinal cord of G93A SOD1 transgenic mice. These results suggest that cPLA2 plays an important role in supplying arachidonic acid to the COX-2 driven inflammatory pathway in ALS associated with SOD1 mutations.  相似文献   

20.
Abstract: Some cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS) are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), suggesting that oxidative damage may play a role in ALS pathogenesis. To further investigate the biochemical features of FALS and sporadic ALS (SALS), we examined markers of oxidative damage to protein, lipids, and DNA in motor cortex (Brodmann area 4), parietal cortex (Brodmann area 40), and cerebellum from control subjects, FALS patients with and without known SOD mutations, SALS patients, and disease controls (Pick's disease, progressive supranuclear palsy, diffuse Lewy body disease). Protein carbonyl and nuclear DNA 8-hydroxy-2'-deoxyguanosine (OH8dG) levels were increased in SALS motor cortex but not in FALS patients. Malondialdehyde levels showed no significant changes. Immunohistochemical studies showed increased neuronal staining for hemeoxygenase-1, malondialdehyde-modified protein, and OH8dG in both SALS and FALS spinal cord. These studies therefore provide further evidence that oxidative damage may play a role in the pathogenesis of neuronal degeneration in both SALS and FALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号