共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
尼帕病毒F糖蛋白在重组牛痘病毒中的表达及鉴定 总被引:3,自引:0,他引:3
尼帕病毒(NiV)F蛋白在病毒侵入细胞和诱导中和抗体等方面具有重要作用。通过over-lapping PCR合成密码子优化的F蛋白基因构建了表达NiV F蛋白的重组牛痘病毒(WR株)rWR-NiV-F。利用兔抗NiV血清为检测抗体,通过间接免疫荧光(IFA)检测到了F蛋白在重组病毒感染细胞中的表达。SDS-PAGE和Western blot检测证明重组蛋白F0被裂解为F1和F2。以rWR-NiV-F感染瞬时转染共表达NiV受体结合囊膜糖蛋白G的BHK细胞,可诱导细胞膜融合及合包体形成,证明该重组病毒表达F蛋白保持良好的抗原性及生物学活性,为NiV诊断及重组活载体疫苗研究奠定了重要基础。 相似文献
3.
Moisy D Avilov SV Jacob Y Laoide BM Ge X Baudin F Naffakh N Jestin JL 《Journal of virology》2012,86(17):9122-9133
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses. 相似文献
4.
5.
Shannon L. Taylor Natalia Frias-Staheli Adolfo García-Sastre Connie S. Schmaljohn 《Journal of virology》2009,83(3):1271-1279
Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-κB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-α-induced activation of NF-κB, as measured by a reporter assay, and the activation of endogenous p65, an NF-κB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-κB (IκB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin α, a nuclear import molecule responsible for shuttling NF-κB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-κB in the cytoplasm, thus inhibiting NF-κB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells. 相似文献
6.
7.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1403-1410
Poliovirus infection results in resistance of infected cells to apoptotic stimuli. Viral proteins involved in such functions usually target key cellular regulators. Here we demonstrate that viral protein 3A binds and inactivates LIS1, a component of the dynein/dynactin motor complex, encoded by the gene mutated in patients with type I lissencephaly (?smooth brain‰), thus causing rapid disappearence of TNF and interferon receptors from the plasma membrane. Like 3A, truncated derivatives of LIS, acting in a dominant negative manner, deregulate endoplasmatic reticilum -to-Golgi vesicular transport and eliminate unstable receptors from the cell surface. Protein 3A locks Golgi-targeted YFP in endoplasmatic reticilum, while expression of LIS1 mutants results in a dispersed cytoplasmic localization of the reporter protein. LIS1 dysfunction caused by ectopic expressing 3A or LIS1 mutants, as well as by overexpression of wild type LIS1, leads to cell trap at a postmitotic stage associated with inability to undergo cytokinesis. Thus, using vural protein as a research tool, we revealed the role of cellular protein LIS1 in endoplasmatic reticilum -to-Golgi transport, maintenance of Golgi integrity and cell cycle progression. Supplemental Material 1 Supplemental Material 2 Supplemental Material 3 相似文献
8.
Hiroshi Katoh Toru Okamoto Takasuke Fukuhara Hiroto Kambara Eiji Morita Yoshio Mori Wataru Kamitani Yoshiharu Matsuura 《Journal of virology》2013,87(1):489-502
Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a binding partner of the core protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys97 and Arg98 in the α-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which Lys97 and Arg98 were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propagation was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral propagation in vitro and in vivo. 相似文献
9.
Ko Tsutsui Ri-ichiroh Manabe Tomiko Yamada Itsuko Nakano Yasuko Oguri Douglas R. Keene Gerhard Sengle Lynn Y. Sakai Kiyotoshi Sekiguchi 《The Journal of biological chemistry》2010,285(7):4870-4882
ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6α and -6β, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6α, in contrast to -6β, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6β binds to the N-terminal half of fibrillin-1 with a dissociation constant of ∼80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly. 相似文献
10.
Chiu YF Sugden B Chang PJ Chen LW Lin YJ Lan YC Lai CH Liou JY Liu ST Hung CH 《Journal of virology》2012,86(18):9647-9655
Epstein-Barr virus (EBV) BBLF1 shares 13 to 15% amino acid sequence identities with the herpes simplex virus 1 UL11 and cytomegalovirus UL99 tegument proteins, which are involved in the final envelopment during viral maturation. This study demonstrates that BBLF1 is a myristoylated and palmitoylated protein, as are UL11 and UL99. Myristoylation of BBLF1 both facilitates its membrane anchoring and stabilizes it. BBLF1 is shown to localize to the trans-Golgi network (TGN) along with gp350/220, a site where final envelopment of EBV particles takes place. The localization of BBLF1 at the TGN requires myristoylation and two acidic clusters, which interact with PACS-1, a cytosolic protein, to mediate retrograde transport from the endosomes to the TGN. Knockdown of the expression of BBLF1 during EBV lytic replication reduces the production of virus particles, demonstrating the requirement of BBLF1 to achieve optimal production of virus particles. BBLF1 is hypothesized to facilitate the budding of tegumented capsid into glycoprotein-embedded membrane during viral maturation. 相似文献
11.
K15 Protein of Kaposi’s Sarcoma-Associated Herpesvirus Is Latently Expressed and Binds to HAX-1, a Protein with Antiapoptotic Function 总被引:2,自引:0,他引:2 下载免费PDF全文
Tyson V. Sharp Hsei-Wei Wang Andrew Koumi Daniel Hollyman Yoshio Endo Hongtao Ye Ming-Qing Du Chris Boshoff 《Journal of virology》2002,76(2):802-816
The Kaposi's sarcoma-associated herpesvirus (KSHV) (or human herpesvirus 8) open reading frame (ORF) K15 encodes a putative integral transmembrane protein in the same genomic location as latent membrane protein 2A of Epstein-Barr virus. Ectopic expression of K15 in cell lines revealed the presence of several different forms ranging in size from full length, approximately 50 kDa, to 17 kDa. Of these different species the 35- and 23-kDa forms were predominant. Mutational analysis of the initiator AUG indicated that translation initiation from this first AUG is required for K15 expression. Computational analysis indicates that the different forms detected may arise due to proteolytic cleavage at internal signal peptide sites. We show that K15 is latently expressed in KSHV-positive primary effusion lymphoma cell lines and in multicentric Castleman's disease. Using a yeast two-hybrid screen we identified HAX-1 (HS1 associated protein X-1) as a binding partner to the C terminus of K15 and show that K15 interacts with cellular HAX-1 in vitro and in vivo. Furthermore, HAX-1 colocalizes with K15 in the endoplasmic reticulum and mitochondria. The function of HAX-1 is unknown, although the similarity of its sequence to those of Nip3 and Bcl-2 infers a role in the regulation of apoptosis. We show here that HAX-1 can form homodimers in vivo and is a potent inhibitor of apoptosis and therefore represents a new apoptosis regulatory protein. The putative functions of K15 with respect to its interaction with HAX-1 are discussed. 相似文献
12.
Common Themes of Antibody Maturation to Simian Immunodeficiency Virus, Simian-Human Immunodeficiency Virus, and Human Immunodeficiency Virus Type 1 Infections 总被引:2,自引:5,他引:2 下载免费PDF全文
Kelly Stefano Cole Michael Murphey-Corb Opendra Narayan Sanjay V. Joag George M. Shaw Ronald C. Montelaro 《Journal of virology》1998,72(10):7852-7859
Characterization of virus-specific immune responses to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) is important to understanding the early virus-host interactions that may determine the course of virus infection and disease. Using a comprehensive panel of serological assays, we have previously demonstrated a complex and lengthy maturation of virus-specific antibody responses elicited by attenuated strains of SIV that was closely associated with the development of protective immunity. In the present study, we expand these analyses to address several questions regarding the nature of the virus-specific antibody responses to pathogenic SIV, SIV/HIV-1 (SHIV), and HIV-1 infections. The results demonstrate for the first time a common theme of antibody maturation to SIV, SHIV, and HIV-1 infections that is characterized by ongoing changes in antibody titer, conformational dependence, and antibody avidity during the first 6 to 10 months following virus infection. We demonstrate that this gradual evolution of virus-specific antibody responses is independent of the levels of virus replication and the pathogenicity of the infection viral strain. While the serological assays used in these studies were useful in discriminating between protective and nonprotective antibody responses during evaluation of vaccine efficacy with attenuated SIV, these same assays do not distinguish the clinical outcome of infection in pathogenic SIV, SHIV, or HIV-1 infections. These results likely reflect differences in the immune mechanisms involved in mediating protection from virus challenge compared to those that control an established viral infection, and they suggest that additional characteristics of both humoral and cellular responses evolve during this early immune maturation. 相似文献
13.
14.
摘要 目的:探讨阿尔兹海默病(AD)患者血清Klotho蛋白、视锥蛋白样蛋白-1(VILIP-1)、高迁移率族蛋白1(HMGB1)与认知功能及预后的关系。方法:选取2019年4月-2021年5月在我院接受治疗的136例AD患者作为AD组,另选取150例同时期在我院进行体检的健康志愿者作为对照组,应用酶联免疫吸附法检测两组血清Klotho蛋白、VILIP-1、HMGB1表达水平,采用简易精神状态检查量表(MMSE)评估两组认知功能,采用Pearson相关性分析以上三指标与MMSE评分之间的关系;AD患者根据治疗1年后的预后情况分为预后良好组(n=74)与预后不良组(n=62),应用单因素、多因素Logistic回归分析引发AD患者预后不良的危险因素;采用受试者工作特征(ROC)曲线评估血清Klotho蛋白、VILIP-1、HMGB1联合检测对AD患者预后的预测效能。结果:AD组的MMSE评分、血清Klotho蛋白水平显著低于对照组,而血清VILIP-1及HMGB1水平显著高于对照组(均P<0.05);Pearson相关性结果显示血清Klotho蛋白水平与MMSE评分之间呈显著正相关(P<0.05),而血清VILIP-1、HMGB1水平与MMSE评分之间呈显著负相关(均P<0.05);多因素Logistic回归分析显示血清VILIP-1、HMGB1水平升高是引发AD患者预后不良的独立危险因素,而血清Klotho蛋白水平升高是其保护因素(P<0.05);ROC曲线显示 Klotho蛋白、VILIP-1、HMGB1联合检测AD患者曲线下面积为0.839,敏感度为80.65%,特异度为83.78%。结论:血清Klotho蛋白、VILIP-1、HMGB1表达水平与AD患者认知功能和预后均具有较强的关联性,临床可以通过联合检测以上三指标辅助评估AD患者的预后。 相似文献
15.
Induction of Syncytia by Neuropathogenic Murine Leukemia Viruses Depends on Receptor Density, Host Cell Determinants, and the Intrinsic Fusion Potential of Envelope Protein 下载免费PDF全文
Maeran Chung Krishnakumar Kizhatil Lorraine M. Albritton Glen N. Gaulton 《Journal of virology》1999,73(11):9377-9385
Infection by the neuropathogenic murine leukemia virus (MLV) TR1.3 results in hemorrhagic disease that correlates directly to in vivo syncytium formation of brain capillary endothelial cells (BCEC). This phenotype maps to amino acid 102 in the envelope (Env) protein of TR1.3. Substitution of glycine (G) for tryptophan (W) at this position (W102G Env) in the nonpathogenic MLV FB29 induces both syncytium formation and neurologic disease in vivo. Using an in vitro gene reporter cell fusion assay, we showed that fusion either with murine NIH 3T3 cells or with nonmurine target cells that expressed receptors at or below endogenous murine levels mirrored that seen in BCEC in vivo. In these instances only TR1.3 and W102G Env induced cell fusion. In contrast, when receptor levels on nonmurine cells were raised above endogenous murine levels, FB29 Env was as fusogenic as the neuropathogenic TR1.3 and W102G Env. These results indicate that TR1.3 Env and W102G Env are intrinsically more fusogenic than FB29 Env, that the induction of fusion requires a threshold number of receptors that is greater for FB29 Env than for TR1.3 or W102G Env, and that receptor density on murine NIH 3T3 cells and BCEC is below the threshold for FB29-dependent fusion. Surprisingly, receptor density on NIH 3T3 cells could not be increased by stable expression of exogenous receptors, and FB29-dependent fusion was not observed in NIH 3T3 cells that transiently expressed elevated receptor numbers. These results suggest that an additional undefined host cell factor(s) may limit both receptor expression and fusion potential in murine cells. 相似文献
16.
Hepatitis C Virus Core Protein Binds to the Cytoplasmic Domain of Tumor Necrosis Factor (TNF) Receptor 1 and Enhances TNF-Induced Apoptosis 总被引:25,自引:0,他引:25 下载免费PDF全文
Nongliao Zhu Ali Khoshnan Robert Schneider Masayuki Matsumoto Gunther Dennert Carl Ware Michael M. C. Lai 《Journal of virology》1998,72(5):3691-3697
The hepatitis C virus (HCV) core protein is known to be a multifunctional protein, besides being a component of viral nucleocapsids. Previously, we have shown that the core protein binds to the cytoplasmic domain of lymphotoxin β receptor, which is a member of tumor necrosis factor receptor (TNFR) family. In this study, we demonstrated that the core protein also binds to the cytoplasmic domain of TNFR 1. The interaction was demonstrated both by glutathione S-transferase fusion protein pull-down assay in vitro and membrane flotation method in vivo. Both the in vivo and in vitro binding required amino acid residues 345 to 407 of TNFR 1, which corresponds to the “death domain” of this receptor. We have further shown that stable expression of the core protein in a mouse cell line (BC10ME) or human cell lines (HepG2 and HeLa cells) sensitized them to TNF-induced apoptosis, as determined by the TNF cytotoxicity or annexin V apoptosis assay. The presence of the core protein did not alter the level of TNFR 1 mRNA in the cells or expression of TNFR 1 on the cell surface, suggesting that the sensitization of cells to TNF by the viral core protein was not due to up-regulation of TNFR 1. Furthermore, we observed that the core protein blocked the TNF-induced activation of RelA/NF-κB in murine BC10ME cells, thus at least partially accounting for the increased sensitivity of BC10ME cells to TNF. However, NF-κB activation was not blocked in core protein-expressing HeLa or HepG2 cells, implying another mechanism of TNF sensitization by core protein. These results together suggest that the core protein can promote cell death during HCV infection via TNF signaling pathways possibly as a result of its interaction with the cytoplasmic tail of TNFR 1. Therefore, TNF may play a role in HCV pathogenesis. 相似文献
17.
Xiaohong Zhuang Hao Wang Sheung Kwan Lam Caiji Gao Xiangfeng Wang Yi Cai Liwen Jiang 《The Plant cell》2013,25(11):4596-4615
Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain–containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2–green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum–derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis. 相似文献
18.
Pradyumna S. Baviskar Anne L. Hotard Martin L. Moore Antonius G. P. Oomens 《Journal of virology》2013,87(19):10730-10741
The human respiratory syncytial virus (HRSV) fusion (F) protein cytoplasmic tail (CT) and matrix (M) protein are key mediators of viral assembly, but the underlying mechanisms are poorly understood. A complementation assay was developed to systematically examine the role of the F protein CT in infectious virus production. The ability of F mutants with alanine substitutions in the CT to complement an F-null virus in generating infectious progeny was quantitated by flow cytometry. Two CT regions with impact on infectious progeny production were identified: residues 557 to 566 (CT-R1) and 569 to 572 (CT-R2). Substitutions in CT-R1 decreased infectivity by 40 to 85% and increased the level of F-induced cell-cell fusion but had little impact on assembly of viral surface filaments, which are believed to be virions. Substitutions in CT-R2, as well as deletion of the entire CT, abrogated infectious progeny production and impaired viral filament formation. However, CT-R2 mutations did not block but rather delayed the formation of viral filaments, which continued to form at a low rate and contained the viral M protein and nucleoprotein (N). Microscopy analysis revealed that substitutions in CT-R2 but not CT-R1 led to accumulation of M and F proteins within and at the perimeter of viral inclusion bodies (IBs), respectively. The accumulation of M and F at IBs and coincident strong decrease in filament formation and infectivity upon CT-R2 mutations suggest that F interaction with IBs is an important step in the virion assembly process and that CT residues 569 to 572 act to facilitate release of M-ribonucleoprotein complexes from IBs. 相似文献
19.
Shintaro Kobayashi Tadaki Suzuki Manabu Igarashi Yasuko Orba Noriko Ohtake Keita Nagakawa Kenichi Niikura Takashi Kimura Harumi Kasamatsu Hirofumi Sawa 《PloS one》2013,8(10)
The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus. 相似文献