首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large GTPase dynamin 2 is a key player in membrane and cytoskeletal dynamics mutated in centronuclear myopathy (CNM) and Charcot-Marie Tooth (CMT) neuropathy, two discrete dominant neuromuscular disorders affecting skeletal muscle and peripheral nerves respectively. The molecular basis for the tissue-specific phenotypes observed and the physiopathological mechanisms linked to dynamin 2 mutations are not well established. In this study, we have analyzed the impact of CNM and CMT implicated dynamin 2 mutants using ectopic expression of four CNM and two CMT mutations, and patient fibroblasts harboring two dynamin 2 CNM mutations in established cellular processes of dynamin 2 action. Wild type and CMT mutants were seen in association with microtubules whereas CNM mutants lacked microtubules association and did not disrupt interphase microtubules dynamics. Most dynamin 2 mutants partially decreased clathrin-mediated endocytosis when ectopically expressed in cultured cells; however, experiments in patient fibroblasts suggested that endocytosis is overall not defective. Furthermore, CNM mutants were seen in association with enlarged clathrin stained structures whereas the CMT mutant constructs were associated with clathrin structures that appeared clustered, similar to the structures observed in Dnm1 and Dnm2 double knock-out cells. Other roles of dynamin 2 including its interaction with BIN1 (amphiphysin 2), and its function in Golgi maintenance and centrosome cohesion were not significantly altered. Taken together, these mild functional defects are suggestive of differences between CMT and CNM disease-causing dynamin 2 mutants and suggest that a slight impairment in clathrin-mediated pathways may accumulate over time to foster the respective human diseases.  相似文献   

2.
The large GTPase dynamin has an important membrane scission function in receptor‐mediated endocytosis and other cellular processes. Self‐assembly on phosphoinositide‐containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin‐homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C‐terminal α‐helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either ‘sensitize’ dynamin to lipid stimulation or elevate basal GTPase rates by promoting self‐assembly and thus rendering dynamin no longer lipid responsive. We also describe a low‐resolution structure of dimeric dynamin from small‐angle X‐ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self‐assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.  相似文献   

3.
Dynamin is the most-studied membrane fission machinery and has served as a paradigm for studies of other fission GTPases; however, several critical questions regarding its function remain unresolved. In particular, because most dynamin GTPase domain mutants studied to date equally impair both basal and assembly-stimulated GTPase activities, it has been difficult to distinguish their respective roles in clathrin-mediated endocytosis (CME) or in dynamin catalyzed membrane fission. Here we compared a new dynamin mutant, Q40E, which is selectively impaired in assembly-stimulated GTPase activity with S45N, a GTP-binding mutant equally defective in both basal and assembly-stimulated GTPase activities. Both mutants potently inhibit CME and effectively recruit other endocytic accessory proteins to stalled coated pits. However, the Q40E mutant blocks at a later step than S45N, providing additional evidence that GTP binding and/or basal GTPase activities of dynamin are required throughout clathrin coated pit maturation. Importantly, using in vitro assays for assembly-stimulated GTPase activity and membrane fission, we find that the latter is much more potently inhibited by both dominant-negative mutants than the former. These studies establish that efficient fission from supported bilayers with excess membrane reservoir (SUPER) templates requires coordinated GTP hydrolysis across two rungs of an assembled dynamin collar.  相似文献   

4.
The human MxA protein is an interferon-induced large GTPase with antiviral activity against a wide range of viruses, including influenza viruses. Recent structural data demonstrated that MxA oligomerizes into multimeric filamentous or ring-like structures by virtue of its stalk domain. Here, we show that negatively charged lipid membranes support MxA self-assembly. Like dynamin, MxA assembled around spherical liposomes inducing liposome tubulation. Cryo-transmission electron microscopy revealed that MxA oligomers around liposomes have a "T-bar" shape similar to dynamin. Moreover, biochemical assays indicated that the unstructured L4 loop of the MxA stalk serves as the lipid-binding moiety, and mutational analysis of L4 revealed that a stretch of four lysine residues is critical for binding. The orientation of the MxA molecule within the membrane-associated oligomer is in agreement with the proposed topology of MxA oligomers based on crystallographic data. Although oligomerization of wild-type MxA around liposomes led to the creation of helically decorated tubes similar to those formed by dynamin, this lipid interaction did not stimulate GTPase activity, in sharp contrast to the assembly-stimulated nucleotide hydrolysis observed with dynamin. Moreover, MxA readily self-assembles into rings at physiological conditions, as opposed to dynamin which self-assembles only at low salt conditions or onto lipids. Thus, the present results indicate that the oligomeric structures formed by MxA critically differ from those of dynamin.  相似文献   

5.
Abundant evidence has shown that the GTPase dynamin is required for receptor-mediated endocytosis, but its exact role in endocytic clathrin-coated vesicle formation remains to be established. Whereas dynamin GTPase domain mutants that are defective in GTP binding and hydrolysis are potent dominant-negative inhibitors of receptor-mediated endocytosis, overexpression of dynamin GTPase effector domain (GED) mutants that are selectively defective in assembly-stimulated GTPase-activating protein activity can stimulate the formation of constricted coated pits and receptor-mediated endocytosis. These apparently conflicting results suggest that a complex relationship exists between dynamin's GTPase cycle of binding and hydrolysis and its role in endocytic coated vesicle formation. We sought to explore this complex relationship by generating dynamin GTPase mutants predicted to be defective at distinct stages of its GTPase cycle and examining the structural intermediates that accumulate in cells overexpressing these mutants. We report that the effects of nucleotide-binding domain mutants on dynamin's GTPase cycle in vitro are not as predicted by comparison to other GTPase superfamily members. Specifically, GTP and GDP association was destabilized for each of the GTPase domain mutants we analyzed. Nonetheless, we find that overexpression of dynamin mutants with subtle differences in their GTPase properties can lead to the accumulation of distinct intermediates in endocytic coated vesicle formation.  相似文献   

6.
The large multidomain GTPase dynamin self-assembles around the necks of deeply invaginated coated pits at the plasma membrane and catalyzes vesicle scission by mechanisms that are not yet completely understood. Although a structural role for the 'middle' domain in dynamin function has been suggested, it has not been experimentally established. Furthermore, it is not clear whether this putative function pertains to dynamin structure in the unassembled state or to its higher-order self-assembly or both. Here, we demonstrate that two mutations in this domain, R361S and R399A, disrupt the tetrameric structure of dynamin in the unassembled state and impair its ability to stably bind to and nucleate higher-order self-assembly on membranes. Consequently, these mutations also impair dynamin's assembly-dependent stimulated GTPase activity.  相似文献   

7.
Dynamin is a GTPase protein that is essential for clathrin-mediated endocytosis of synaptic vesicle membranes. The Drosophila dynamin mutation shi(ts1) changes a single residue (G273D) at the boundary of the GTPase domain. In cell fractionation of homogenized fly heads without monovalent cations, all dynamin was in pellet fractions and was minimally susceptible to Triton-X extraction. Addition of Na(+) or K(+) can extract dynamin to the cytosolic (supernatant) fraction. The shi(ts1) mutation reduced the sensitivity of dynamin to salt extraction compared with other temperature-sensitive alleles or wild type. Sensitivity to salt extraction in shi(ts1) was enhanced by GTP and nonhydrolyzable GTP-gammaS. The shi(ts1) mutation may therefore induce a conformational change, involving the GTP binding site, that affects dynamin aggregation. Temperature-sensitive shibire mutations are known to arrest endocytosis at restrictive temperatures, with concomitant accumulation of presynaptic collared pits. Consistent with an effect upon dynamin aggregation, intact shi(ts1) flies recovered much more slowly from heat-induced paralysis than did other temperature-sensitive shibire mutants. Moreover, a genetic mutation that lowers GTP abundance (awd(msf15)), which reduces the paralytic temperature threshold of other temperature-sensitive shibire mutations that lie closer to consensus GTPase motifs, did not reduce the paralytic threshold of shi(ts1). Taken together, the results may link the GTPase domain to conformational shifts that influence aggregation in vitro and endocytosis in vivo, and provide an unexpected point of entry to link the biophysical properties of dynamin to physiological processes at synapses.  相似文献   

8.
Mitochondria dynamically fuse and divide within cells, and the proper balance of fusion and fission is necessary for normal mitochondrial function, morphology, and distribution. Drp1 is a dynamin-related GTPase required for mitochondrial fission in mammalian cells. It harbors four distinct domains: GTP-binding, middle, insert B, and GTPase effector. A lethal mutation (A395D) within the Drp1 middle domain was reported in a neonate with microcephaly, abnormal brain development, optic atrophy, and lactic acidemia (Waterham, H. R., Koster, J., van Roermund, C. W., Mooyer, P. A., Wanders, R. J., and Leonard, J. V. (2007) N. Engl. J. Med. 356, 1736–1741). Mitochondria within patient-derived fibroblasts were markedly elongated, but the molecular mechanisms underlying these findings were not demonstrated. Because the middle domain is particularly important for the self-assembly of some dynamin superfamily proteins, we tested the hypothesis that this A395D mutation, and two other middle domain mutations (G350D, G363D) were important for Drp1 tetramerization, higher order assembly, and function. Although tetramerization appeared largely intact, each of these mutations compromised higher order assembly and assembly-dependent stimulation of Drp1 GTPase activity. Moreover, mutant Drp1 proteins exhibited impaired localization to mitochondria, indicating that this higher order assembly is important for mitochondrial recruitment, retention, or both. Overexpression of these middle domain mutants markedly inhibited mitochondrial division in cells. Thus, the Drp1 A395D lethal defect likely resulted in impaired higher order assembly of Drp1 at mitochondria, leading to decreased fission, elongated mitochondria, and altered cellular distribution of mitochondria.  相似文献   

9.

Background

Dynamin 2 (Dyn2) is a ~ 100 kDa GTPase that assembles around the necks of nascent endocytic and Golgi vesicles and catalyzes membrane scission. Mutations in Dyn2 that cause centronuclear myopathy (CNM) have been shown to stabilize Dyn2 polymers against GTP-dependent disassembly in vitro. Precisely timed regulation of assembly and disassembly is believed to be critical for Dyn2 function in membrane vesiculation, and the CNM mutations interfere with this regulation by shifting the equilibrium toward the assembled state.

Methods

In this study we use two fluorescence fluctuation spectroscopy (FFS) approaches to show that a CNM mutant form of Dyn2 also has a greater propensity to self-assemble in the cytosol and on the plasma membrane of living cells.

Results

Results obtained using brightness analysis indicate that unassembled wild-type Dyn2 is predominantly tetrameric in the cytosol, although different oligomeric species are observed, depending on the concentration of expressed protein. In contrast, an R369W mutant identified in CNM patients forms higher-order oligomers at concentrations above 1 μM. Investigation of Dyn2-R369W by Total Internal Reflection Fluorescence (TIRF) FFS reveals that this mutant forms larger and more stable clathrin-containing structures on the plasma membrane than wild-type Dyn2.

Conclusions and general significance

These observations may explain defects in membrane trafficking reported in CNM patient cells and in heterologous systems expressing CNM-associated Dyn2 mutants.  相似文献   

10.
Dynamin (Dyn) is a multidomain and multifunctional GTPase best known for its essential role in clathrin‐mediated endocytosis (CME). Dyn2 mutations have been linked to two human diseases, centronuclear myopathy (CNM) and Charcot‐Marie‐Tooth (CMT) disease. Paradoxically, although Dyn2 is ubiquitously expressed and essential for embryonic development, the disease‐associated Dyn2 mutants are autosomal dominant, but result in slowly progressing and tissue‐specific diseases. Thus, although the cellular defects that cause disease remain unclear, they are expected to be mild. To gain new insight into potential pathogenic mechanisms, we utilized mouse Dyn2 conditional knockout cells combined with retroviral‐mediated reconstitution to mimic both heterozygous and homozygous states and characterized cellular phenotypes using quantitative assays for several membrane trafficking events. Surprisingly, none of the four mutants studied exhibited a defect in CME, but all were impaired in their ability to support p75/neurotrophin receptor export from the Golgi, the raft‐dependent endocytosis of cholera toxin and the clathrin‐independent endocytosis of epidermal growth factor receptor (EGFR). While it will be important to study these mutants in disease‐relevant muscle and neuronal cells, given the importance of neurotrophic factors and lipid rafts in muscle physiology, we speculate that these common cellular defects might contribute to the tissue‐specific diseases caused by a ubiquitously expressed protein.  相似文献   

11.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

12.
The Saccharomyces cerevisiae Dnm1 protein is structurally related to dynamin, a GTPase required for membrane scission during endocytosis. Here we show that Dnm1p is essential for the maintenance of mitochondrial morphology. Disruption of the DNM1 gene causes the wild-type network of tubular mitochondrial membranes to collapse to one side of the cell but does not affect the morphology or distribution of other cytoplasmic organelles. Dnm1 proteins containing point mutations in the predicted GTP-binding domain or completely lacking the GTP-binding domain fail to rescue mitochondrial morphology defects in a dnm1 mutant and induce dominant mitochondrial morphology defects in wild-type cells. Indirect immunofluorescence reveals that Dnm1p is distributed in punctate structures at the cell cortex that colocalize with the mitochondrial compartment. These Dnm1p-containing structures remain associated with the spherical mitochondria found in an mdm10 mutant strain. In addition, a portion of Dnm1p cofractionates with mitochondrial membranes during differential sedimentation and sucrose gradient fractionation of wild-type cells. Our results demonstrate that Dnm1p is required for the cortical distribution of the mitochondrial network in yeast, a novel function for a dynamin-related protein.  相似文献   

13.
Quantitative analysis of Grb2/dynamin interaction through plasmon resonance analysis (BIAcore) using Grb2 mutants showed that the high affinity measured between Grb2 and dynamin is essentially mediated by the N-SH3 domain of Grb2. In order to study the interactions between Grb2 and either dynamin or Sos in more detail, Grb2 N-SH3 domains containing different mutations have been analysed. Two mutations were located on the hydrophobic platform binding proline-rich peptides (Y7V and P49L) and one (E40T) located in a region that we had previously shown to be essential for Grb2/dynamin interactions. Through NMR analysis, we have clearly demonstrated that the structure of the P49L mutant is not folded, while the other E40T and Y7V mutants adopt folded structures that are quite similar to that described for the reference domain. Nevertheless, these point mutations were shown to alter the overall stability of these domains by inducing an equilibrium between a folded and an unfolded form. The complex formed between the peptide VPPPVPPRRR, derived from Sos, and the E40T mutant was shown to have the same 3D structure as that described for the wild-type SH3 domain. However, the VPPPVPPRRR peptide adopts a slightly different orientation when it is complexed with the Y7V mutant. Finally, the affinity of the proline-rich peptide GPPPQVPSRPNR, derived from dynamin, for the Grb2 N-SH3 domain was too low to be analyzed by NMR. Thus, the interaction between either Sos or dynamin and the SH3 mutants were tested on a cellular homogenate by means of a far-Western blot analysis. In these conditions, the P49L mutant was shown to be devoid of affinity for Sos as well as for dynamin. The Y7V SH3 mutant displayed a decrease of affinity for both Sos and dynamin, while the E40T mutant exhibited a decrease of affinity only for dynamin. These results support the existence of two binding sites between dynamin and the Grb2 N-SH3 domain.  相似文献   

14.
Regarding the molecular mechanism of dynamin in receptor-mediated endocytosis, GTPase activity of dynamin has been thought to have a critical role in endocytic vesicle internalization. However, a recent report suggested that GTP-binding to dynamin itself activates the dynamin to recruit molecular machinery necessary for endocytosis. In this study, to investigate the role of GTP binding to dynamin II, we generated two mutant dynamin II constructs: G38V and K44E. G38V, its GTP binding site might be mainly occupied by GTP caused by reduced GTPase activity, and K44E mutant, its GTP binding site might be vacant, caused by its decreased affinity for GTP and GDP. From the analysis of the ratio of GTP vs GDP bound to dynamin, we confirmed these properties. To test the effect of these mutant dynamins on endocytosis, we performed flow cytometry and confocal immunofluorescence analysis and found that these two mutants have inhibitory effect on transferrin-induced endocytosis. Whereas fluorescent transferrin was completely internalized in wild-type (WT) dynamin II expressing cells, no intracellular accumulation of fluorescent transferrin was found in the cells overexpressing K44E and G38V mutant. Interestingly, the amount of GTP bound to K44E was increased when endocytosis was induced than that bound to WT. The present results suggested that the GTPase activity of dynamin II is required for formation of endocytic vesicle and GTP-binding to dynamin II per se is not sufficient for stimulating endocytosis.  相似文献   

15.
Dynamin is a large GTP-binding protein that mediates endocytosis by hydrolyzing GTP. Previously, we reported that phospholipase D2 (PLD2) interacts with dynamin in a GTP-dependent manner. This implies that PLD may regulate the GTPase cycle of dynamin. Here, we show that PLD functions as a GTPase activating protein (GAP) through its phox homology domain (PX), which directly activates the GTPase domain of dynamin, and that the arginine residues in the PLD-PX are vital for this GAP function. Moreover, wild-type PLD-PX, but not mutated PLD-PXs defective for GAP function in vitro, increased epidermal growth factor receptor (EGFR) endocytosis at physiological EGF concentrations. In addition, the silencing of PLDs was shown to retard EGFR endocytosis and the addition of wild-type PLDs or lipase-inactive PLDs, but not PLD1 mutants with defective GAP activity for dynamin in vitro, resulted in the recovery of EGFR endocytosis. These findings suggest that PLD, functioning as an intermolecular GAP for dynamin, accelerates EGFR endocytosis. Moreover, we determined that the phox homology domain itself had GAP activity - a novel function in addition to its role as a binding motif for proteins or lipids.  相似文献   

16.
Dynamins are large GTPases that oligomerize along membranes. Dynamin''s membrane fission activity is believed to underlie many of its physiological functions in membrane trafficking. Previously, we reported that DYN-1 (Caenorhabditis elegans dynamin) drove the engulfment and degradation of apoptotic cells through promoting the recruitment and fusion of intracellular vesicles to phagocytic cups and phagosomes, an activity distinct from dynamin''s well-known membrane fission activity. Here, we have detected the oligomerization of DYN-1 in living C. elegans embryos and identified DYN-1 mutations that abolish DYN-1''s oligomerization or GTPase activities. Specifically, abolishing self-assembly destroys DYN-1''s association with the surfaces of extending pseudopods and maturing phagosomes, whereas inactivating guanosine triphosphate (GTP) binding blocks the dissociation of DYN-1 from these membranes. Abolishing the self-assembly or GTPase activities of DYN-1 leads to common as well as differential phagosomal maturation defects. Whereas both types of mutations cause delays in the transient enrichment of the RAB-5 GTPase to phagosomal surfaces, only the self-assembly mutation but not GTP binding mutation causes failure in recruiting the RAB-7 GTPase to phagosomal surfaces. We propose that during cell corpse removal, dynamin''s self-assembly and GTP hydrolysis activities establish a precise dynamic control of DYN-1''s transient association to its target membranes and that this control mechanism underlies the dynamic recruitment of downstream effectors to target membranes.  相似文献   

17.
Dynamin GTPase activity is required for its biological function in clathrin-mediated endocytosis; however, the role of self-assembly has not been unambiguously established. Indeed, overexpression of a dynamin mutant, Dyn1-K694A, with impaired ability to self-assemble has been shown to stimulate endocytosis in HeLa cells (Sever et al., Nature 1999, 398, 481). To identify new, assembly-incompetent mutants of dynamin 1, we made point mutations in the GTPase effector/assembly domain (GED) and tested for their effects on self-assembly and clathrin-mediated endocytosis. Mutation of three residues, I690, K694, and I697, suggests that interactions with an amphipathic helix in GED are required for self-assembly. In particular, Dyn1-I690K failed to exhibit detectable assembly-stimulated GTPase activity under all assay conditions. Overexpression of this assembly-incompetent mutant inhibited transferrin endocytosis as potently as the GTPase-defective dominant-negative mutant, Dyn1-K44A. However, worm-like endocytic intermediates accumulated in cells expressing Dyn1-I690K that were structurally distinct from long tubules that accumulated in cells expressing Dyn1-K44A. Together these results provide new structural insight into the role of GED in self-assembly and assembly-stimulated GTPase activity and establish that dynamin self-assembly is essential for clathrin-mediated endocytosis.  相似文献   

18.
The role of human dynamin in receptor-mediated endocytosis was investigated by transient expression of GTP-binding domain mutants in mammalian cells. Using assays which detect intermediates in coated vesicle formation, the dynamin mutants were found to block endocytosis at a stage after the initiation of coat assembly and preceding the sequestration of ligands into deeply invaginated coated pits. Membrane transport from the ER to the Golgi complex was unaffected indicating that dynamin mutants specifically block early events in endocytosis. These results demonstrate that mutations in the GTP-binding domain of dynamin block Tfn-endocytosis in mammalian cells and suggest that a functional dynamin GTPase is required for receptor-mediated endocytosis via clathrin-coated pits.  相似文献   

19.
Centronuclear myopathies (CNM) are inherited congenital disorders characterized by an excessive number of internalized nuclei. In humans, CNM results from ∼70 mutations in three major genes from the myotubularin, dynamin and amphiphysin families. Analysis of animal models with altered expression of these genes revealed common defects in all forms of CNM, paving the way for unified pathogenic and therapeutic mechanisms. Despite these efforts, some CNM cases remain genetically unresolved. We previously identified an autosomal recessive form of CNM in French Labrador retrievers from an experimental pedigree, and showed that a loss-of-function mutation in the protein tyrosine phosphatase-like A (PTPLA) gene segregated with CNM. Around the world, client-owned Labrador retrievers with a similar clinical presentation and histopathological changes in muscle biopsies have been described. We hypothesized that these Labradors share the same PTPLAcnm mutation. Genotyping of an international panel of 7,426 Labradors led to the identification of PTPLAcnm carriers in 13 countries. Haplotype analysis demonstrated that the PTPLAcnm allele resulted from a single and recent mutational event that may have rapidly disseminated through the extensive use of popular sires. PTPLA-deficient Labradors will help define the integrated role of PTPLA in the existing CNM gene network. They will be valuable complementary large animal models to test innovative therapies in CNM.  相似文献   

20.
The GTPase dynamin is essential for clathrin-mediated endocytosis. Unlike most GTPases, dynamin has a low affinity for nucleotide, a high rate of GTP hydrolysis, and can self-assemble, forming higher order structures such as rings and spirals that exhibit up to 100-fold stimulated GTPase activity. The role(s) of GTP binding and/or hydrolysis in endocytosis remain unclear because mutations in the GTPase domain so far studied impair both. We generated a new series of GTPase domain mutants to probe the mechanism of GTP hydrolysis and to further test the role of GTP binding and/or hydrolysis in endocytosis. Each of the mutations had parallel effects on assembly-stimulated and basal GTPase activities. In contrast to previous reports, we find that mutation of Thr-65 to Ala (or Asp or His) dramatically lowered both the rate of assembly-stimulated GTP hydrolysis and the affinity for GTP. The assemblystimulated rate of hydrolysis was lowered by the mutation of Ser-61 to Asp and increased by the mutation of Thr-141 to Ala without significantly altering the Km for GTP. For some mutants and to a lesser extent for WT dynamin, self-assembly dramatically altered the Km for GTP, suggesting that conformational changes in the active site accompany self-assembly. Analysis of transferrin endocytosis rates in cells overexpressing mutant dynamins revealed a stronger correlation with both the basal and assembly-stimulated rates of GTP hydrolysis than with the calculated ratio of dynamin-GTP/free dynamin, suggesting that GTP binding is not sufficient, and GTP hydrolysis is required for clathrin-mediated endocytosis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号