首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.  相似文献   

3.
Sphingolipid biosynthesis commences with the condensation of L-serine and palmitoyl-CoA to produce 3-ketodihydrosphingosine (KDS). This reaction is catalysed by the PLP-dependent enzyme serine palmitoyltransferase (SPT; EC 2.3.1.50), which is a membrane-bound heterodimer (SPT1/SPT2) in eukaryotes such as humans and yeast and a cytoplasmic homodimer in the Gram-negative bacterium Sphingomonas paucimobilis. Unusually, the outer membrane of S. paucimobilis contains glycosphingolipid (GSL) instead of lipopolysaccharide (LPS), and SPT catalyses the first step of the GSL biosynthetic pathway in this organism. We report here the crystal structure of the holo-form of S. paucimobilis SPT at 1.3 A resolution. The enzyme is a symmetrical homodimer with two active sites and a monomeric tertiary structure consisting of three domains. The PLP cofactor is bound covalently to a lysine residue (Lys265) as an internal aldimine/Schiff base and the active site is composed of residues from both subunits, located at the bottom of a deep cleft. Models of the human SPT1/SPT2 heterodimer were generated from the bacterial structure by bioinformatics analysis. Mutations in the human SPT1-encoding subunit have been shown to cause a neuropathological disease known as hereditary sensory and autonomic neuropathy type I (HSAN1). Our models provide an understanding of how these mutations may affect the activity of the enzyme.  相似文献   

4.
SLs (sphingolipids) are composed of fatty acids and a polar head group derived from L-serine. SLs are essential components of all eukaryotic and many prokaryotic membranes but S1P (sphingosine 1-phosphate) is also a potent signalling molecule. Recent efforts have sought to inventory the large and chemically complex family of SLs (LIPID MAPS Consortium). Detailed understanding of SL metabolism may lead to therapeutic agents specifically directed at SL targets. We have studied the enzymes involved in SL biosynthesis; later stages are species-specific, but all core SLs are synthesized from the condensation of L-serine and a fatty acid thioester such as palmitoyl-CoA that is catalysed by SPT (serine palmitoyltransferase). SPT is a PLP (pyridoxal 5'-phosphate)-dependent enzyme that forms 3-KDS (3-ketodihydrosphingosine) through a decarboxylative Claisen-like condensation reaction. Eukaryotic SPTs are membrane-bound multi-subunit enzymes, whereas bacterial enzymes are cytoplasmic homodimers. We use bacterial SPTs (e.g. from Sphingomonas) to probe their structure and mechanism. Mutations in human SPT cause a neuropathy [HSAN1 (hereditary sensory and autonomic neuropathy type?1)], a rare SL metabolic disease. How these mutations perturb SPT activity is subtle and bacterial SPT mimics of HSAN1 mutants affect the enzyme activity and structure of the SPT dimer. We have also explored SPT inhibition using various inhibitors (e.g. cycloserine). A number of new subunits and regulatory proteins that have a direct impact on the activity of eukaryotic SPTs have recently been discovered. Knowledge gained from bacterial SPTs sheds some light on the more complex mammalian systems. In the present paper, we review historical aspects of the area and highlight recent key developments.  相似文献   

5.
Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral neuropathy associated with progressive distal sensory loss and severe ulcerations. Mutations in the first subunit of the enzyme serine palmitoyltransferase (SPT) have been associated with HSAN-I. The SPT enzyme catalyzes the first and rate-limiting step in the de novo sphingolipid synthesis pathway. However, different studies suggest the implication of other genes in the pathology of HSAN-I. Therefore, we screened the two other known subunits of SPT, SPTLC2 and SPTLC3, in a cohort of 78 HSAN patients. No mutations were found in SPTLC3, but we identified three heterozygous missense mutations in the SPTLC2 subunit of SPT in four families presenting with a typical HSAN-I phenotype. We demonstrate that these mutations result in a partial to complete loss of SPT activity in vitro and in vivo. Moreover, they cause the accumulation of the atypical and neurotoxic sphingoid metabolite 1-deoxy-sphinganine. Our findings extend the genetic heterogeneity in HSAN-I and enlarge the group of HSAN neuropathies associated with SPT defects. We further show that HSAN-I is consistently associated with an increased formation of the neurotoxic 1-deoxysphinganine, suggesting a common pathomechanism for HSAN-I.  相似文献   

6.
We have begun a biochemical-genetic analysis of the synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae and found evidence for the occurrence of serine palmitoyltransferase (SPT) and 3-ketosphinganine reductase, enzymes that catalyze the initial steps of the pathway in other organisms. SPT activity was demonstrated in vitro with crude membrane preparations from S. cerevisiae as judged by the formation of radiolabeled 3-ketosphinganine from the condensation of palmitoyl-coenzyme A (CoA) with radiolabeled serine. Shorter (C12 and C14) and longer (C18) acyl-CoAs sustain significant SPT activity, a result consistent with the finding of both C18 and C20 long-chain bases in the organism. Three products of the long-chain-base synthetic pathway, 3-ketosphinganine, erythrosphinganine, and phytosphingosine, neither directly inhibited the reaction in vitro nor affected the specific activity of the enzyme when these bases were included in the culture medium of wild-type cells. Thus, no evidence for either feedback inhibition or repression of enzyme synthesis could be found with these putative effectors. Mutant strains of S. cerevisiae that require a sphingolipid long-chain base for growth fall into two genetic complementation groups, LCB1 and LCB2. Membrane preparations from both lcb1 and lcb2 mutant strains exhibited negligible SPT activity when tested in vitro. Step 2 of the long-chain-base synthetic pathway was demonstrated by the stereospecific NADPH-dependent reduction of 3-ketosphinganine to erythrosphinganine. Membranes isolated from wild-type cells and from an lcb1 mutant exhibited substantial 3-ketosphinganine reductase activity. We conclude that the Lcb- phenotype of these mutants results from a missing or defective SPT, an activity controlled by both the LCB1 and LCB2 genes. These results and earlier work from this laboratory establish that SPT plays an essential role in sphingolipid synthesis in S. cerevisiae.  相似文献   

7.
《The Journal of cell biology》1993,123(5):1237-1248
Primary hyperoxaluria type 1 (PH 1), an inborn error of glyoxylate metabolism characterized by excessive synthesis of oxalate and glycolate, is caused by a defect in serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT). This enzyme is peroxisomal in human liver. Recently, we cloned SPT/AGT-cDNA from a PH 1 case, and demonstrated a point mutation of T to C in the coding region of the SPT/AGT gene encoding a Ser to Pro substitution at residue 205 (Nishiyama, K., T. Funai, R. Katafuchi, F. Hattori, K. Onoyama, and A. Ichiyama. 1991. Biochem. Biophys. Res. Commun. 176:1093-1099). In the liver of this patient, SPT/AGT was very low with respect to not only activity but also protein detectable on Western blot and immunoprecipitation analyses. Immunocytochemically detectable SPT/AGT labeling was also low, although it was detected predominantly in peroxisomes. On the other hand, the level of translatable SPT/AGT-mRNA was higher than normal, indicating that SPT/AGT had been synthesized in the patient's liver at least as effectively as in normal liver. Rapid degradation of the mutant SPT/AGT was then demonstrated in transfected COS cells and transformed Escherichia coli, accounting for the low level of immunodetectable mutant SPT/AGT in the patient's liver. The mutant SPT/AGT was also degraded much faster than normal in an in vitro system with a rabbit reticulocyte extract, and the degradation in vitro was ATP dependent. These results indicate that a single amino acid substitution in SPT/AGT found in the PH1 case leads to a reduced half- life of this protein. It appears that the mutant SPT/AGT is recognized in cells as an abnormal protein to be eliminated by degradation.  相似文献   

8.
9.
10.
Serine palmitoyltransferase (SPT), a membrane-bound enzyme of the endoplasmic reticulum, catalyzes the condensation of palmitoyl coenzyme A (CoA) and L-serine to produce 3-ketodihydrosphingosine. This enzyme contains at least two different subunits, named the LCB1 and LCB2 proteins. In the present study, we expressed a FLAG- and His(6) peptide-tagged version of the hamster LCB1 protein in a Chinese hamster ovary cell mutant strain lacking the endogenous LCB1 subunit and purified SPT from the cells near to homogeneity by affinity peptide chromatography. The endogenous LCB2 protein was co-purified with the tagged LCB1 protein in purification of SPT. In various aspects, including optimum pH, acyl-CoA specificity, and sphingofungin sensitivity, the activity of purified SPT was consistent with the activity detected in lysates of wild-type Chinese hamster ovary cells. The optimum concentration of palmitoyl-CoA for 3-ketodihydrosphingosine formation by purified SPT was approximately 25 microM, and the apparent K(m) of L-serine was 0.28 mM. Competition analysis of the SPT reaction with various serine analogs showed that all of the amino, carboxyl, and hydroxyl groups of L-serine were responsible for the substrate recognition of the enzyme. SDS-polyacrylamide gel electrophoretic analysis of purified SPT, together with immunoprecipitation analysis of metabolically labeled LCB proteins, strongly suggested that the SPT enzyme consisted of the LCB1 and LCB2 proteins with a stoichiometry of 1:1.  相似文献   

11.
The ORM1 (Saccharomyces cerevisiae)-like proteins (ORMDLs) and their yeast orthologs, the Orms, are negative homeostatic regulators of the initiating enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT). Genome-wide association studies have established a strong correlation between elevated expression of the endoplasmic reticulum protein ORMDL3 and risk for childhood asthma. Here we test the notion that elevated levels of ORMDL3 decrease sphingolipid biosynthesis. This was tested in cultured human bronchial epithelial cells (HBECs) (an immortalized, but untransformed, airway epithelial cell line) and in HeLa cells (a cervical adenocarcinoma cell line). Surprisingly, elevated ORMDL3 expression did not suppress de novo biosynthesis of sphingolipids. We determined that ORMDL is expressed in functional excess relative to SPT at normal levels of expression. ORMDLs and SPT form stable complexes that are not increased by elevated ORMDL3 expression. Although sphingolipid biosynthesis was not decreased by elevated ORMDL3 expression, the steady state mass levels of all major sphingolipids were marginally decreased by low level ORMDL3 over-expression in HBECs. These data indicate that the contribution of ORMDL3 to asthma risk may involve changes in sphingolipid metabolism, but that the connection is complex.  相似文献   

12.
We devised an in situ assay method for the activity of serine palmitoyltransferase (SPT) that catalyzes the first step in sphingolipid biosynthesis and isolated a temperature-sensitive mutant of Chinese hamster ovary cells with thermolabile SPT. This mutant stopped growing at 40 degrees C after several generations, although the cells grew at 33 and 37 degrees C at rates similar to those of the parent. The SPT activity in cell homogenates of the mutant grown at low temperatures was 4-8% of that in the parent homogenates. When the cells were cultured for several generations at 40 degrees C, the activity in the mutant homogenate became negligible. When cell homogenates were incubated at 45 degrees C before enzyme assay, mutant SPT was more markedly inactivated than parental SPT, indicating that mutant SPT had become thermolabile. The rates of de novo synthesis of sphingolipids in the mutant were much slower at 40 degrees C than at lower temperatures, in contrast to those in the parent. The sphingomyelin content in the mutant cultivated at 40 degrees C for several generations was also less than that at low temperatures. These results indicate that SPT functions in the main pathway for sphingolipid biosynthesis. The temperature-sensitive growth of the mutant defective in sphingolipid synthesis suggests that sphingolipid(s) plays an essential role in cell growth.  相似文献   

13.
Choline acetyltransferase, the enzyme that synthesizes the transmitter acetylcholine in cholinergic neurons, is a substrate for protein kinase C. In the present study, we used mass spectrometry to identify serine 440 in recombinant human 69-kDa choline acetyltransferase as a protein kinase C phosphorylation site, and site-directed mutagenesis to determine that phosphorylation of this residue is involved in regulation of the enzyme's catalytic activity and binding to subcellular membranes. Incubation of HEK293 cells stably expressing wild-type 69-kDa choline acetyltransferase with the protein kinase C activator phorbol 12-myristate 13-acetate showed time- and dose-related increases in specific activity of the enzyme; in control and phorbol ester-treated cells, the enzyme was distributed predominantly in cytoplasm (about 88%) with the remainder (about 12%) bound to cellular membranes. Mutation of serine 440 to alanine resulted in localization of the enzyme entirely in cytoplasm, and this was unchanged by phorbol ester treatment. Furthermore, activation of mutant enzyme in phorbol ester-treated HEK293 cells was about 50% that observed for wild-type enzyme. Incubation of immunoaffinity purified wild-type and mutant choline acetyltransferase with protein kinase C under phosphorylating conditions led to incorporation of [(32)P]phosphate, with radiolabeling of mutant enzyme being about one-half that of wild-type, indicating that another residue is phosphorylated by protein kinase C. Acetylcholine synthesis in HEK293 cells expressing wild-type choline acetyltransferase, but not mutant enzyme, was increased by about 17% by phorbol ester treatment.  相似文献   

14.
Yeast cells expressing the Glu418Lys human topoisomerase I mutant display a camptothecin resistance that slowly decreases as a function of time. Molecular characterization of the single steps of the catalytic cycle of the purified mutant indicates that it has a relaxation activity identical to the wild-type protein but a different DNA sequence specificity for the cleavage sites when compared to the wild-type enzyme, as assayed on several substrates. In particular the mutant has a low specificity for CPT sensitive cleavable sites. In fact, the mutant has, at variance of the wild-type enzyme, a reduced preference for cleavage sites having a thymine base in position −1 of the scissile strand. This preference, together with the strict requirement for a thymine base in position −1 for an efficient camptothecin binding, explains the temporary camptothecin resistance of the yeast cell expressing the mutant and points out the importance of the DNA sequence in the binding of the camptothecin drug.  相似文献   

15.
StarD10 is a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine and phosphatidylethanolamine between membranes in vitro. We now provide evidence that, in vivo, StarD10 is phosphorylated on serine 284. This novel phosphorylation site was identified by tandem mass spectrometry of immunoaffinity-purified StarD10 from lysates of HEK293T cells transiently expressing the protein. In vitro kinase assays revealed that casein kinase II was capable of phosphorylating wild-type StarD10 but not a S284A mutant protein. Interestingly, hypotonic extracts prepared from HEK293T cells expressing the serine to alanine mutant exhibited increased lipid transfer activity compared with those from wild-type StarD10-expressing cells, suggesting that, in a cellular context, phosphorylation on serine 284 negatively regulates StarD10 activity. Because casein kinase II phosphorylation also inhibited lipid transfer activity of the purified recombinant StarD10 protein, inhibition is not dependent on any cellular cofactors. Instead, our data show that C-terminal StarD10 phosphorylation on serine 284 regulates its association with cellular membranes.  相似文献   

16.
Fumonisin B1 (FB1) is a mycotoxin that inhibits ceramide synthases (CerS) and causes kidney and liver toxicity and other disease. Inhibition of CerS by FB1 increases sphinganine (Sa), Sa 1-phosphate, and a previously unidentified metabolite. Analysis of the latter by quadrupole-time-of-flight mass spectrometry assigned an m/z = 286.3123 in positive ionization mode, consistent with the molecular formula for deoxysphinganine (C18H40NO). Comparison with a synthetic standard using liquid chromatography, electrospray tandem mass spectrometry identified the metabolite as 1-deoxysphinganine (1-deoxySa) based on LC mobility and production of a distinctive fragment ion (m/z 44, CH3CH=NH +2) upon collision-induced dissociation. This novel sphingoid base arises from condensation of alanine with palmitoyl-CoA via serine palmitoyltransferase (SPT), as indicated by incorporation of l-[U-13C]alanine into 1-deoxySa by Vero cells; inhibition of its production in LLC-PK1 cells by myriocin, an SPT inhibitor; and the absence of incorporation of [U-13C]palmitate into 1-[13C]deoxySa in LY-B cells, which lack SPT activity. LY-B-LCB1 cells, in which SPT has been restored by stable transfection, however, produce large amounts of 1-[13C]deoxySa. 1-DeoxySa was elevated in FB1-treated cells and mouse liver and kidney, and its cytotoxicity was greater than or equal to that of Sa for LLC-PK1 and DU-145 cells. Therefore, this compound is likely to contribute to pathologies associated with fumonisins. In the absence of FB1, substantial amounts of 1-deoxySa are made and acylated to N-acyl-1-deoxySa (i.e. 1-deoxydihydroceramides). Thus, these compounds are an underappreciated category of bioactive sphingoid bases and “ceramides” that might play important roles in cell regulation.Fumonisins (FB)2 cause diseases of horses, swine, and other farm animals and are regarded to be potential risk factors for human esophageal cancer (1) and, more recently, birth defects (2). Studies of this family of mycotoxins, and particularly of the highly prevalent subspecies fumonisin B1 (FB1) (reviewed in Refs. 1 and 2), have established that FB1, is both toxic and carcinogenic for laboratory animals, with the liver and kidney being the most sensitive target organs (3, 4). Other FB are also toxic, but their carcinogenicity is unknown.FB are potent inhibitors of ceramide synthase(s) (CerS) (5), the enzymes responsible for acylation of sphingoid bases using fatty acyl-CoA for sphingolipid biosynthesis de novo and recycling pathways (6). As a consequence of this inhibition, the substrates sphinganine (Sa) and, usually to a lesser extent, sphingosine (So), accumulate and are often diverted to sphinganine 1-phosphate (Sa1P) and sphingosine 1-phosphate (S1P), respectively (7), while the product N-acylsphinganines (dihydroceramides), N-acylsphingosines (ceramides, Cer), and more complex sphingolipids decrease (5, 7). This disruption of sphingolipid metabolism has been proposed to be responsible for the toxicity, and possibly carcinogenicity, of FB, based on mechanistic studies with cells in culture (5, 79). This has been borne out by a number of animal feeding studies that have correlated the elevation of Sa in blood, urine, liver, and kidney with liver and kidney toxicity (4, 7, 10, 11).Most of the mechanistic studies have focused on the accumulation of free Sa and other sphingoid bases, because these compounds are highly cytotoxic, although the large number of bioactive metabolites in this pathway make it likely that multiple mediators may participate (7, 9). Nonetheless, inhibition of serine palmitoyltransferase (SPT), the initial enzyme of de novo sphingolipid biosynthesis, reverses the increased apoptosis and altered cell growth induced by FB1 treatment (1219). Therefore, it is likely that these effects of FB1 are due to the accumulation of cytotoxic intermediate(s) rather than depletion of downstream metabolites, because the latter also occurs when SPT is inhibited.In studies of the effects of FB1 on the renal cell line LLC-PK1 (20),3 we have noted that in addition to the elevation of Sa and So, there is a large increase in an unidentified species that appears to be a sphingoid base, because it is extracted by organic solvents, derivatized with ortho-phthalaldehyde (OPA), and eluted from reverse-phase liquid chromatography (LC) in the sphingoid base region. Herein we report: (i) the isolation and characterization of this novel sphingoid base as 1-deoxysphinganine (1-deoxySa); (ii) that its origin is the utilization of alanine instead of serine by SPT as well as that the N-acyl-derivatives of 1-deoxySa (1-deoxydihydroceramides (1-deoxyDHCer)) are normally found in mammalian cells; (iii) that 1-deoxySa has cytotoxicity comparable to other sphingoid bases elevated by FB1; and (iv) that 1-deoxySa is not only elevated in cells in culture but also in tissues of animals exposed to dietary FB and, therefore, might contribute to diseases caused by these mycotoxins.  相似文献   

17.
18.
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease. Recently, several gain-of-function mutations in SPTLC1 were associated with juvenile ALS. SPTLC1 encodes for a subunit of the serine-palmitoyltransferase (SPT) - the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL). SPT activity, and thus SL de novo synthesis, is tightly controlled by a homeostatic feedback mechanism mediated by ORMDL proteins. Here we report a novel SPTLC1p.L38R mutation in a young Chinese girl with a signature of juvenile ALS. The patient presented with muscular weakness and atrophy, tongue tremor and fasciculation, breathing problems and positive pyramidal signs. All SPTLC1-ALS mutations including the SPTLC1 p.L38R are located within a single membrane-spanning domain of the protein and impede the interaction with the regulatory ORMDL subunit of SPT. Pertinent to the altered homeostatic control, lipid analysis showed overall increased SL levels in the patient plasma. An increased SPT activity and SL de novo synthesis was confirmed in p.L38R expressing HEK293 cells. Particularily dihydro-sphingolipids (dhSL) were signficantly increased in patient plasma and p.L38R mutant expressing cells. Increased dhSL formation has been previously linked to neurotoxicity and may be involved in the pathomechanism of SPTLC1-ALS mutations.  相似文献   

19.
Myosin I is required for hypha formation in Candida albicans   总被引:1,自引:0,他引:1       下载免费PDF全文
The pathogenic yeast Candida albicans can undergo a dramatic change in morphology from round yeast cells to long filamentous cells called hyphae. We have cloned the CaMYO5 gene encoding the only myosin I in C. albicans. A strain with a deletion of both copies of CaMYO5 is viable but cannot form hyphae under all hypha-inducing conditions tested. This mutant exhibits a higher frequency of random budding and a depolarized distribution of cortical actin patches relative to the wild-type strain. We found that polar budding, polarized localization of cortical actin patches, and hypha formation are dependent on a specific phosphorylation site on myosin I, called the “TEDS-rule” site. Mutation of this serine 366 to alanine gives rise to the null mutant phenotype, while a S366D mutation, the product of which mimics a phosphorylated serine, allows hypha formation. However, the S366D mutation still causes a depolarized distribution of cortical actin patches in budding cells, similar to that in the null mutant. The localization of CaMyo5-GFP together with cortical actin patches at the bud and hyphal tips is also dependent on serine 366. Intriguingly, the cortical actin patches in the majority of the hyphae of the mutant expressing Camyo5S366D were depolarized, suggesting that although their distribution is dependent on myosin I localization, polarized cortical actin patches may not be required for hypha formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号