首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Scavenger receptor BI (SR-BI) is a selective uptake receptor for HDL cholesterol but is also involved in the catabolism of apolipoprotein (apo)B-containing lipoproteins. However, plasma levels of apoB-containing lipoproteins increase following hepatic SR-BI overexpression, suggesting that SR-BI not solely mediates their catabolism. We therefore tested the hypothesis that hepatic SR-BI impacts on VLDL production. On day 7 following adenovirus (Ad)-mediated overexpression of SR-BI, VLDL-triglyceride and VLDL-apoB production rates were significantly increased (P < 0.001), whereas VLDL production was significantly lower in SR-BI knockout mice compared with controls (P < 0.05). In mice injected with AdSR-BI, hepatic cholesterol content increased (P < 0.001), microsomal triglyceride transfer protein activity was higher (P < 0.01) and expression of sterol-regulatory element binding protein (SREBP)2 and its target genes was decreased (P < 0.01). Conversely, in SR-BI knockout mice, microsomal triglyceride transfer protein activity was lower and expression of SREBP2 target genes was increased (P < 0.01). Finally, we demonstrate in vitro in isolated primary hepatocytes as well as in vivo that cholesterol derived from HDL and taken up via SR-BI into the liver can be resecreted within VLDL. These data indicate that hepatic SR-BI expression is linked to VLDL production, and within liver, a metabolic shunt might exist that delivers HDL cholesterol, at least in part, to a pool from which cholesterol is mobilized for VLDL production. These results might have implications for HDL-based therapies against atherosclerotic cardiovascular disease, especially with SR-BI as target.  相似文献   

2.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

3.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

4.
5.
Mipomersen, an antisense oligonucleotide that reduces hepatic production of apoB, has been shown in phase 2 studies to decrease plasma apoB, LDL cholesterol (LDL-C), and triglycerides. ApoC-III inhibits VLDL and LDL clearance, and it stimulates inflammatory responses in vascular cells. Concentrations of VLDL or LDL with apoC-III independently predict cardiovascular disease. We performed an exploratory posthoc analysis on a subset of hypercholesterolemic subjects obtained from a randomized controlled dose-ranging phase 2 study of mipomersen receiving 100, 200, or 300 mg/wk, or placebo for 13 wk (n = 8 each). ApoC-III-containing lipoproteins were isolated by immuno-affinity chromatography and ultracentrifugation. Mipomersen 200 and 300 mg/wk reduced total apoC-III from baseline by 6 mg/dl (38-42%) compared with placebo group (P < 0.01), and it reduced apoC-III in both apoB lipoproteins and HDL. Mipomersen 100, 200, and 300 mg doses reduced apoB concentration of LDL with apoC-III (27%, 38%, and 46%; P < 0.05). Mipomersen reduced apoC-III concentration in HDL. The drug had no effect on apoE concentration in total plasma and in apoB lipoproteins. In summary, antisense inhibition of apoB synthesis reduced plasma concentrations of apoC-III and apoC-III-containing lipoproteins. Lower concentrations of apoC-III and LDL with apoC-III are associated with reduced risk of coronary heart disease (CHD) in epidemiologic studies independent of traditional risk factors.  相似文献   

6.
The assembly and secretion of very low density lipoproteins (VLDL) require microsomal triglyceride transfer protein (MTP). Recent evidence also suggests a role for the low density lipoprotein (LDL) receptor in this process. However, the relative importance of MTP in the two steps of VLDL assembly and the specific role of the LDL receptor still remain unclear. To further investigate the role of MTP and the LDL receptor in VLDL assembly, we bred mice harboring "floxed" Mttp alleles (Mttpflox/flox) and a Cre transgene on a low-density lipoprotein receptor-deficient background to generate mice with double deficiency in the liver (Ldlr-/- MttpDelta/Delta). In contrast to the plasma of Ldlr+/+ MttpDelta/Delta mice, the plasma of Ldlr-/- MttpDelta/Delta mice contained apoB100. Accordingly, Ldlr-/- MttpDelta/Delta but not Ldlr+/+ MttpDelta/Delta hepatocytes secreted apoB100-containing lipoprotein particles. The secreted lipoproteins were of LDL and HDL sizes but no VLDL-sized lipoproteins could be detected. These findings indicate that hepatic LDL receptors function as "gatekeepers" targeting dense apoB100-containing lipoproteins for degradation. In addition, these results suggest that very low levels of MTP are insufficient to mediate the second step but sufficient for the first step of VLDL assembly.  相似文献   

7.
Hypercholesterolemia was induced in adult male rhesus monkeys with a high-fat diet containing an elevated cholesterol level (0.5%). Plasma lipoproteins were chromatographically separated into four size populations (regions) that were subdivided by density until fractions with single electrophoretic mobilities were obtained. The region III lipoproteins (LDL) contained 80% of plasma cholesterol and were present in the highest concentration of all fractions. Their molecular weight was increased over that of controls so that each particle averaged 1.8 times the number of cholesteryl ester molecules as did control LDL. Region II lipoproteins, a heterogeneous group, were present in next highest concentration. Most were cholesteryl ester-rich, beta-migrating lipoproteins that overlapped the VLDL and LDL density ranges; apoB was the predominant apoprotein. One region II subfraction had pre beta 2 migration and the density range. 1.050 less than d less than 1.10. Another subfraction, cholesteryl ester-rich VLDL including only about 1% of plasma cholesterol, had pre beta 1 migration and apoB and apoC as the predominant apoproteins with no apoprotein E. Region I lipoproteins were larger sized, slow beta-migrating cholesteryl ester-rich VLDL that included 5% of plasma cholesterol. ApoB and apoE were the predominant apoproteins. Region IV lipoproteins (HDL) contained 4% of the plasma cholesterol; their concentration was decreased to about 1/3 of the control level. Atherogenic features of the diet-induced dyslipoproteinemia included the increased plasma concentrations and cholesteryl ester contents of the region I, II, and III lipoproteins in addition to the decreased HDL concentration.  相似文献   

8.
1. The ACAT inhibitors, CL 277082 and SA 58-035 were administered for 7 days to hamsters fed diets containing 0.5% cholesterol. 2. Both agents inhibited cholesterol absorption, decreased hepatic. VLDL and IDL cholesterol esters, plasma HDL and HDL apoE and A-I. 3. In addition, CL 277082 treatment produced significant decreases in plasma cholesterol, VLDL apoB and plasma IDL. 4. The cholesteryl esters in VLDL and LDL but not HDL were more polyunsaturated in CL 277082 treated animals. 5. These results support the hypothesis that ACAT inhibition in the cholesterol fed hamster results in an inhibition of dietary cholesterol absorption, thus limiting the cholesterol supply required for the hepatic production of triglyceride-rich lipoproteins.  相似文献   

9.
The fate of cholesteryl esters in high density lipoprotein (HDL) was studied to determine whether the transfer of esterified cholesterol from HDL to other plasma lipoproteins occurred to a significant extent in man. HDL cholesteryl ester, labelled in vitro with [3H] cholesterol, was injected into human subjects. Labelling of cholesteryl esters in very low density (VLDL) occurred rapidly and by 3 h, the esterified cholesterol in VLDL reached peak specific radioactivity. The removal rate of cholesteryl esters from HDL appeared to be exponential and of the order of 0.2/h; calculation of the apparent flux was about 150 mg/h which approximates reported values for total cholesterol esterification in human plasma in vivo. The rapid rate of labelling of VLDL from HDL suggests that the transfer of HDL cholesteryl esters to VLDL may represent a significant pathway for the disposal of HDL cholesterol.  相似文献   

10.
Hepatic lipase (HL) is a key player in lipoprotein metabolism by modulating, through its lipolytic activity, the triglyceride (TG) and phospholipid content of apolipoprotein B (apoB)-containing lipoproteins and of high density lipoproteins (HDL), thereby affecting their size and density. A new and separate role has been suggested for HL in cellular lipoprotein metabolism, in which it serves as a ligand promoting cellular uptake of apoB-containing remnant lipoproteins and HDL. We tested the hypothesis that HL has both a lipolytic and a nonlipolytic role in human lipoprotein metabolism, by measuring lipid plasma concentrations, lipoprotein density distribution by density gradient ultracentrifugation, and lipoprotein composition, in three subjects with HL deficiency: two of the patients (S-1 and S-3) were characterized as having neither plasma HL activity nor detectable HL protein; the third subject (S-2) had no plasma HL activity but a detectable amount (35.5 ng/ml) of HL protein. All HL-deficient subjects showed a severalfold increase in lipoprotein TG content across the lipoprotein density spectrum [very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), low density lipoprotein (LDL), and HDL] as compared with control subjects. They also had remarkably more buoyant LDL particles (LDL-R(f) = 0.342;-0.394) as compared with the control subjects (LDL-R(f) = 0.303). Subjects S-1 and S-3 (no HL activity or protein) presented with a distinct increase in cholesterol and apoB levels in the IDL and VLDL density range as compared with patient S-2, with detectable HL protein, and the control subjects.This study provides evidence in humans that HL indeed plays an important role in lipoprotein metabolism independent of its enzymatic activity: in particular, inactive HL protein appears to affect VLDL and IDL particle concentration, whereas HL enzymatic activity seems to influence VLDL-, IDL-, LDL-, and HDL-TG content and their physical properties.  相似文献   

11.
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis.  相似文献   

12.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

13.

Background

Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown.

Methods and Findings

We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob 100/100).

Conclusions

Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.  相似文献   

14.
The St. Thomas' mixed hyperlipidemic (SMHL) rabbit (previously St. Thomas' Hospital rabbit) is a putative model of familial combined hyperlipidemia (FCH). When fed a low (0.08%) cholesterol diet, it exhibits elevations in both plasma cholesterol and triglyceride compared to New Zealand White (NZW) controls. To determine the mechanism for this hyperlipidemia we studied the secretion of apolipoprotein B (apoB)-containing lipoproteins from perfused livers of both young and mature rabbits. During a 3-h perfusion we measured the total cholesterol and triglyceride content of the medium and the cholesterol, triglyceride, and apoB content of very low density lipoprotein (VLDL)(1) (S(f) 60;-400), VLDL(2) (S(f) 20;-60), intermediate (S(f) 12;-20), and low (S(f) 0;-12) density lipoproteins (IDL, LDL). Lipoprotein concentrations increased linearly throughout the perfusion period. The rate of cholesterol output was 3-fold higher (459 vs. 137 ng/g liver/min, P = 0.003) in SMHL versus NZW rabbits whilst that of triglyceride was similar (841 vs. 662 ng/g liver/min, NS). VLDL(1) cholesterol output was elevated 2-fold (232 vs. 123 ng/g liver/min, P < 0.05) and VLDL(2) + IDL + LDL cholesterol output, 4.5-fold (106 vs. 23 ng/g liver/min, P < 0. 005) in SMHL versus NZW rabbits. ApoB output in VLDL1 was 38 ng/g liver per min in SMHL and 14 ng/g liver per min in NZW (NS). In SMHL VLDL(2) + IDL + LDL apoB was increased 9-fold at 53 versus 6 ng/g liver per min in NZW (P < 0.001). We conclude that the SMHL rabbit overproduces apoB-containing lipoproteins particularly in the VLDL(2) + IDL + LDL fraction, a characteristic consistent with its use as a model of FCH.  相似文献   

15.
Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, we examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125I-monoiodotyrosine) and progestin [mainly 20α-dihydroprogesterone (20α-DHP)]. In the absence of FSH and androgen, 2 × 105 granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20α-DHP. The addition of 10?7 M androstenedione (A), testosterone (T), or 5α-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20α-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20α-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20α-DHP production. The addition of a 10-fold excess cyproterone acetate (an anti-androgen) inhibited the effect of T, suggesting that the action of T was mediated by the granulosa cell androgen receptor. Androgen and FSH also synergistically stimulated the production of 3H-progestin when the granulosa cells were incubated with either 3H-cholesterol ester core labeled human HDL or similarly labeled human LDL. This report demonstrates that androgen, in combination with FSH, augments the steroidogenic pathway of the granulosa cell from the degradation of lipoprotein and utilization of the cholesterol ester core, to the production of progestin product.  相似文献   

16.
Studies of truncated apoB peptides in human subjects with familial hypobetalipoproteinemia, as well as of puromycin-generated spectra of nascent apoB peptides in rat and hamster liver, suggest that a minimum size is required for N-terminal fragments of apoB to be efficiently assembled into full-sized VLDL. We report here results of experiments undertaken to examine this phenomenon in greater detail by expressing individual carboxyl-truncated human apoB constructs in McArdle cells. Thus, apoB-29, -32, -37, -42, -47, -53, -70 and full length apoB-100 were transiently expressed in rat McA-RH7777 hepatoma cells, or human apoB-31 and apoB-53 were stably expressed in the same cells, and the secreted VLDL particles were characterized by kinetic gradient ultracentrifugal flotation. Calibration with rat plasma VLDL subfractions showed that about 90 and 50%, respectively, of lipoprotein particles containing endogenous rat B-100 and B-48 floated between fractions 2;-8 of the 11-fraction gradient. This corresponds to the normal VLDL diameter range of about 47 to 28 nm, with the remaining half of rat B-48 recovered as HDL particles in the 1.1 g/ml range. In contrast, regardless of their size, only 2;-5% of any of the truncated human apoB peptides expressed in these cells was recovered in the VLDL region of the gradient. The remaining 95+% of the lipoproteins were found as high density particles; as previously found in other systems the densities of the latter were inversely related to their peptide chain-length. Furthermore, transiently expressed full-length human apoB-100 was inefficiently secreted as VLDL by these cells, with the remainder appearing as LDL-sized particles. Thus, although we showed that McA-RH7777 cells secreted endogenous rat apoB as normal-sized VLDL, we found them unsuitable for our original purpose of using human apoB fragments to further define effects of apoB size on VLDL assembly. These cells appeared unable to efficiently use any size of human apoB for that process. Pulse-labeled untransfected McA-RH7777 cells chased in the presence of puromycin did, however, show a sharp decline in VLDL assembly efficiency for endogenous nascent rat apoB peptides shorter than B-48, similar to that originally found in normal rat liver.  相似文献   

17.
The liver is a major source of the plasma lipoproteins; however, direct studies of the regulation of lipoprotein synthesis and secretion by human liver are lacking. Dense monolayers of Hep-G2 cells incorporated radiolabeled precursors into protein ([35S]methionine), cholesterol ([3H]mevalonate and [14C]acetate), triacylglycerol, and phospholipid ([3H]glycerol), and secreted them as lipoproteins. In the absence of free fatty acid in the media, the principal lipoprotein secretory product that accumulated had a density maximum of 1.039 g/ml, similar to serum low density lipoprotein (LDL). ApoB-100 represented greater than 95% of the radiolabeled apoprotein of these particles, with only traces of apoproteins A and E present. Inclusion of 0.8 mM oleic acid in the media resulted in a 54% reduction in radiolabeled triacylglycerol in the LDL fraction and a 324% increase in triacylglycerol in the very low density lipoprotein (VLDL) fraction. Similar changes occurred in the secretion of newly synthesized apoB-100. The VLDL contained apoB-100 as well as apoE. In the absence of exogenous free fatty acid, the radiolabeled cholesterol was recovered in both the LDL and the high density lipoprotein (HDL) regions. Oleic acid caused a 50% decrease in HDL radiolabeled cholesterol and increases of radiolabeled cholesterol in VLDL and LDL. In general, less than 15% of the radiolabeled cholesterol was esterified, despite the presence of cholesteryl ester in the cell. Incubation with oleic acid did not cause an increase in the total amount of radiolabeled lipid or protein secreted. We conclude that human liver-derived cells can secrete distinct VLDL and LDL-like particles, and the relative amounts of these lipoproteins are determined, at least in part, by the availability of free fatty acid.  相似文献   

18.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

19.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

20.
Poly-β-hydroxybutyrate (PHB) is an amphiphilic lipid that has been found to be a ubiquitous component of the cellular membranes of bacteria, plants and animals. The distribution of PHB in human plasma was investigated using chemical and immunological methods. PHB concentrations proved highly variable; in a random group of 24 blood donors, total plasma PHB ranged from 0.60 to 18.2 mg/l, with a mean of 3.5 mg/l. In plasma separated by density gradient ultracentrifugation, lipoproteins carried 20–30% of total plasma PHB; 6–14% in the very low density lipoproteins (VLDL), 8–16% in the low density lipoproteins (LDL), and < 3% in the high density lipoproteins (HDL). The majority of plasma PHB (70–80%) was found in protein fractions of density > 1.22 g/ml. Western blot analysis of the high density fractions with anti-PHB F(ab')2 identified albumin as the major PHB-binding protein. The affinity of albumin for PHB was confirmed by in vitro studies which demonstrated transfer of 14C-PHB from chloroform into aqueous solutions of human and bovine serum albumins. PHB was less tightly bound to LDL than to other plasma components; the polymer could be isolated from LDL by extraction with chloroform, or by digestion with alkaline hypochlorite, but it could not similarly be recovered from VLDL or albumin. PHB in the LDL correlated positively with total plasma cholesterol and LDL cholesterol, and negatively with HDL cholesterol. The wide concentration range of PHB in plasma, its presence in VLDL and LDL and absence in HDL, coupled with its physical properties, suggest it may have important physiological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号