首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of native natural enemies on populations of the grape mealybug,Pseudococcus maritimus (Ehrhorn) in apple and pear orchards was assessed using a combination of techniques, including exclusion cages, limb-banding, and visual inspection of shoots and fruits. The complex of native natural enemies (which included two encyrtid parasitoids, (Pseudaphycus websteri Timberlake andMayridia species), a coccinellid beetle (Hyperaspis lateralis Mulsant), and a chamaemyiid fly (Leucopis verticalis Malloch), provided reasonably good control in orchards that had not been treated with insecticides for one to two years. However, surveys indicated that most of these species were absent from orchards regularly sprayed with pesticides.  相似文献   

2.
Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) is a Neotropical invasive mealybug that has rapidly spread throughout Mediterranean Basin. It has established itself as the principal pest of several ornamental plants, causing considerable problems in nurseries and urban landscapes. The aim of this study was to determine the natural enemy complex of this pest and report the feasibility of its biological control. Six urban green spaces were surveyed in eastern Spain from 2008 to 2010. The most abundant natural enemies of P. peruvianus were found to be the primary parasitoids Acerophagus n. sp. near coccois and Leptomastix epona Walker (Hymenoptera: Encyrtidae). Phenacoccus peruvianus populations were lower during the second and third year of the survey, coinciding with an increase of the parasitoid Acerophagus sp., which displaced the native L. epona. Differential female offspring and resource preemption are discussed as the main reasons for this displacement.  相似文献   

3.
To improve natural suppression of the obscure mealybug, Pseudococcus viburni (Signoret), the parasitoids Pseudaphycus flavidulus (Brèthes) and Leptomastix epona (Walker) (Hymenoptera: Encyrtidae) of Chilean origin were released in California's Central Coast vineyards from 1997 to 1999. A survey for parasitoids of P. viburni was conducted in the Edna Valley appellation wine grape region from 2005 to 2007, 6–8 years after classical biological control releases were discontinued. Two survey methods were used. First, field collections of obscure mealybugs from commercial vineyard blocks (2005–2007) and, second, placement of “sentinel mealybugs” on potted (1 L) grape vines (2006 only). From both survey methods, P. flavidulus was recovered, albeit levels of parasitism were low (less than 0.6%). We also placed longtailed mealybug, Pseudococcus longispinus (Targioni Tozzetti), on potted plants concurrent with placement of sentinel obscure mealybugs in the vineyard in order to measure parasitoid activity on this closely-related mealybug species. No P. flavidulus were recovered from P. longispinus. Other encyrtid parasitoids reared from either P. viburni or P. longispinus were Anagyrus pseudococci (Girault), Leptomastix dactylopii Howard, Leptomastidea abnormis (Girault), Coccidoxenoides perminutus Girault, and Tetracnemoidea peregrina (Compere). A hyperparasitoid, Chaetocerus sp., was also reared. The data are discussed with respect to biological control of vineyard mealybugs and newly developed controls for the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). Because Pseudaphycus species reared from mealybugs are superficially very similar a taxonomic key and discussion of host relationships for selected Pseudaphycus species are provided.  相似文献   

4.
The population density of mealybug species in some South African citrus orchards has increased to pest status in recent years. The characterization of the natural enemy complex and quantification of their contribution to the control of Planococcus citri (Risso), Pseudococcus longispinus (Targioni-Tozzetti) and Pseudococcus calceolariae (Maskell) on Citrus limon (L.) and Citrus reticulata (Blanco) was investigated through intensive sampling. Eight primary and four secondary parasitoids, and two predator species were identified from P. citri and P. calceolariae. Anagyrus pseudococci (Girault) and Coccidoxenoides peregrinus (Timberlake) were the most common species, accounting for 44% and 21% of the total. Of the five primary parasitoids reared from P. longispinus, A. pseudococci and Anagyrus sp. were predominant, comprising 41% and 30%. Nymphal and adult parasitism (range = 0-26% vs. 0-66%) and predation (range = 0-5.6% vs. 0-4.1%) varied significantly between host trees and mealybug species (P < 0.001). The numbers of nymphal instars and adult stages of P. calceolariae and P. longispinus and the nymphal stage of P. citri that were parasitized and killed by predators correlated significantly with the total number of hosts on which they acted (P < 0.01), suggesting a density-dependent association. Laboratory bioassay of nine contact insecticides (methidathion, methomyl, methyl-parathion, parathion, profenofos and prothiofos) against C. peregrinus indicated that all were highly toxic, causing 98-100% mortality in < 6 h of treatment. The IGRs fenoxycarb and triflumuron did not cause significant parasitoid mortality (P > 0.05). However, a mixture of pyriproxyfen and mineral oil caused a marginally significant mortality (P < 0.05).  相似文献   

5.
Collections of natural enemies of Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) were made in Lavras, state of Minas Gerais, Brazil. In the greenhouse, 6,495 predators and 16,628 parasitoids belonging to three families were collected. In the field, 267 predators and 344 parasitoids belonging to five families were found. For the first time in Brazil, five species of predators associated with this whitefly were reported. Because of the diversity of natural enemies of B. tabaci biotype B recorded, this study points out the importance of these data for studies on integrated pest management.  相似文献   

6.
The co-evolutionary relationships between mealybug hosts (Hemiptera: Coccoidea) and Encyrtidae (Hymenoptera) appear to be particularly strong, and many successful classical biological control programmes against mealybugs have been carried out using these parasitoids. It is a puzzle, then, that the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), is considered to be an American species but is not attacked by native parasitoids in the USA, whereas it is controlled in Europe by Acerophagus maculipennis (Mercet) (Encyrtidae) which was described from the Canary Islands (as Pseudophycus maculipennis). An examination of the biogeographical origins of both the Pseudococcus maritimus complex (to which P. viburni clearly belongs) and the genus Acerophagus Smith, coupled with historical trade records, supports the hypothesis that P. viburni and A. maculipennis are co-evolved Neotropical species, and that both were transported from S. America (probably Chile) to Europe via the Canary Islands on host plants such as potato, possibly as early as the sixteenth century. Invasion of P. viburni into the USA (and elsewhere around the world) occurred later, but without A. maculipennis (or other natural enemies). This explains why P. viburni in the USA is not attacked by native North American parasitoids and why A. maculipennis is not known to attack any mealybugs of Palaearctic origin. The hypothesis adds confidence that well conducted classical biocontrol programmes involving these taxa pose a low environmental risk to native, non-target fauna.  相似文献   

7.
More than 1300 mealybugs and their natural enemies were collected from six crops (apples, pears, nashi, citrus, persimmon and grapes) at 91 sites. Pseudococcus longispinus and P. calceolariae were the commonest species in all crops, except in pipfruit in Hawkes Bay, inhabited almost exclusively by P. affinis. These three species accounted for more than 99% of all mealybugs collected. Mealybugs were attacked by 14 species of natural enemy, only two of which had been deliberately introduced to New Zealand. Six species of Encyrtidae were reared. Anagyrus fusciventris was recorded from New Zealand for the first time. Parectromoides varipes was newly identified as a primary parasitoid of mealybugs, and males of this species and Gyranusoidea advena, previously unknown, were found. Both species, together with Tetracnemoidea sydneyensis, T. peregrina and T. brevicornis, and Coccophagus gurneyi (Aphelinidae) and two species of Ophelosia (Pteromalidae) were widespread throughout the surveyed regions. Common predators included Cryptolaemus montrouzieri (Col: Coccinellidae), Cryptoscenea australiensis (Neuroptera: Coniopterygidae) and Diadiplosis koebelei (Dipt: Cecidomyiidae). Hyperparasitoids were extremely rare. Five species of ants were recorded tending mealybugs, but none is known to be disruptive to mealybug natural enemies. The implications of these data for biological control of mealybug pests in horticultural crops is discussed, and it is concluded that Pseudaphycus maculipennis (Hym: Encyrtidae) should be introduced against P. affinis. No other importations are recommended. The activity of existing species should be encouraged in future integrated pest management (IPM) programmes, by, for example, distributing A. fusciventris around the country, and commercializing the mass rearing and release of C. montrouzieri.  相似文献   

8.
Abstract 1. The Argentine ant, Linepithema humile, tends honeydew‐excreting homopterans and can disrupt the activity of their natural enemies. This mutualism is often cited for increases in homopteran densities; however, the ant’s impact on natural enemies may be only one of several effects of ant tending that alters insect densities. To test for the variable impacts of ants, mealybug and natural enemy densities were monitored on ant‐tended and ant‐excluded vines in two California vineyard regions. 2. Ant tending increased densities of the obscure mealybug, Pseudococcus viburni, and lowered densities of its encyrtid parasitoids Pseudaphycus flavidulus and Leptomastix epona. Differences in parasitoid recovery rates suggest that P. flavidulus was better able to forage on ant‐tended vines than L. epona. 3. Densities of a coccinellid predator, Cryptolaemus montrouzieri, were higher on ant‐tended vines, where there were more mealybugs. Together with behavioural observations, the results showed that this predator can forage in patches of ant‐tended mealybugs, and that it effectively mimics mealybugs to avoid disturbance by ants. 4. Ant tending increased densities of the grape mealybug, Pseudococcus maritimus, by increasing the number of surviving first‐instar mealybugs. Parasitoids were nearly absent from the vineyard infested with P. maritimus. Therefore, ants improved either mealybug habitat or fitness. 5. There was no difference in mealybug distribution or seasonal development patterns on ant‐tended and ant‐excluded vines, indicating that ants did not move mealybugs to better feeding locations or create a spatial refuge from natural enemies. 6. Results showed that while Argentine ants were clearly associated with increased mealybug densities, it is not a simple matter of disrupting natural enemies. Instead, ant tending includes benefits independent of the effect on natural enemies. Moreover, the effects on different natural enemy species varied, as some species thrive in the presence of ants.  相似文献   

9.
The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry) can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation) ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order.  相似文献   

10.
Abstract The mealybug Oracella acuta, native to the southeastern US, was accidentally introduced into slash pine plantations in Guangdong Province in China in 1988. A classical biological control program was initiated in 1995, and the parasitoids Allotropa oracellae, Acerophaus coccois, and Zarhopalus debarri were imported from the US. A total of 19 972 parasitized mealybugs were shipped to China from 1996–2004, from which 15 430 wasps emerged, 12 933 of which were the three target species. Efforts to establish a mass-rearing program for the parasitoids in China failed. Five field release sites were established, and 6 020 parasitoids were released. Only 118 individuals of the three imported species were collected during establishment checks, although several wasps were collected 1–2 years after the last parasitoid release. Over 2 000 Anagyrus dactylopii, a cosmopolitan parasitoid, emerged from the parasitized mealybugs collected, a majority from the Taishan area near the site of the original introduction of O. acuta. To date the imported parasitoids have failed to establish, and natural enemies have not noticeably reduced mealybug populations.  相似文献   

11.
Y. Argov  Y. Rössler 《BioControl》1993,38(1):89-100
During the years 1975–1982, the “Israel Cohen” Inst. for Biological Control conducted a biological control project, against the black scale,Saissetia oleae (Olivier) (Homoptera: Coccidae). Seventeen species of natural enemies were introduced into Israel during that period, and their action reduced the populations of the pest to an acceptable level. The major parasitoid responsible for that transition wasMetaphycus bartletti Annecke &; Mynhardt (Hymenoptera: Encyrtidae). This article describes the project and introduces some notes on the biology of the introduced parasitoids.  相似文献   

12.
The mutualistic association between some ant species and honeydew‐producing Hemiptera has been shown to influence the distribution patterns and abundance of these hemipterans and their natural enemies. We studied the spatial distribution patterns of three ant species, mealybugs and mealybug parasitoids for two consecutive growing seasons on three wine grape farms in the Western Cape, South Africa. During the study period, no ant or mealybug controls were applied. Ant and mealybug monitoring was conducted on a total of 21 ha using a presence/absence sampling system, while parasitoids were collected from infested mealybug females. Spatial analysis by distance indices was used to analyse spatial distribution of insects and ArcView? was used to map the gap, patch and local association indices where significant association and disassociation occurred. Significant associations were found between some ants and parasitoids, while significant disassociations between the ants Crematogaster peringueyi and Linepithema humile; and also between Crematogaster peringueyi and Anoplolepis steingroeveri were found. Interspecific competition between ant species could play a role in the distribution of parasitoids and mealybugs. Our results stress the importance of monitoring for ants and mealybugs and further highlight the importance of restricted chemical applications against ants during the growing season.  相似文献   

13.
Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy) a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa), sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain.  相似文献   

14.
In unifested fields, 80 cassava tips were artificially infested with 0, 1, 2, 4, 8, 16, 32, or 64 third instars, and 20 or 100 eggs of cassava mealybug,Phenacoccus manihoti Matile-Ferrero (Hom., Pseudococcidae). Another 80 uninfested tips served as a control. Tips were arranged in a circle of 28 m diameter, in the centre of which the following exotic natural enemies ofP. manihoti were released:Apoanagyrus (Epidinocarsis) lopezi De Santis andA. diversicornis (Howard) (Hym., Encyrtidae),Hyperaspis notata (Mulsant) andDiomus hennesseyi Fürsch (Col., Coccinellidae), and others. This experiment was repeated six times. During the 4–14 days following release, all experimental tips were inspected at two-hour intervals during each day and the presence of exotic as well as indigenous natural enemies, likeExochomus troberti Mulsant (Col., Coccinellidae), ants and spiders was noted. The experiment was repeated six times measured the aggregative response by the natural enemies to different host densities, achieved through host attractance and arrestment. All exotic natural enemies, except the males ofApoanagyrus spp., were fast attracted to the host colonies. As compared to the control tips, they concentrated on the infested tips about 50-fold for the twoApoanagyrus spp. and 10 to 20-fold for the exotic coccinellids. By contrast, non-coevolved indigenous coccinellids, as well as generalist predators like ants and spiders were attracted to the infested tips only 2 to 5-fold.A. lopezi responded best to different host densities, followed byA. diversicornis and the coccinellids, followed by ants and spiders. None of the parasitoids or predators was particularly attracted to egg masses. These results correspond closely to the known efficiencies of these natural enemies,A. lopezi standing out among all candidates. The results of such aggregation studies are compared with those of life-table studies.  相似文献   

15.
Abstract  A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species ( Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites.  相似文献   

16.
We previously discovered that (2,4,4‐trimethyl‐2‐cyclohexenyl)‐methyl butyrate (cyclolavandulyl butyrate, CLB) is an attractant for the mealybug‐parasitic wasp Anagyrus sawadai Ishii (Hymenoptera: Encyrtidae: Anagyrini). This wasp is not likely to parasitize the Japanese mealybug, Planococcus kraunhiae (Kuwana) (Hemiptera: Pseudococcidae), under natural conditions. In this study, we showed that this ‘non‐natural’ enemy wasp can parasitize P. kraunhiae in the presence of CLB in field experiments. Laboratory‐reared mealybugs placed on persimmon trees with CLB‐impregnated rubber septa were parasitized significantly more often by endoparasitic wasps than those on non‐treatment trees (18.1–40.3 vs. 0–6.3%). Anagyrus sawadai accounted for 20% of the wasps that emerged from mealybugs placed on CLB‐treated trees. Moreover, CLB attracted another minor parasitoid, Leptomastix dactylopii Howard (Hymenoptera: Encyrtidae: Anagyrini), which also parasitized more P. kraunhiae in the presence of CLB. All wasps that emerged from the mealybugs on control trees were Anagyrus fujikona Tachikawa, a major parasitoid of P. kraunhiae around the test location. These results demonstrated that CLB can recruit an indigenous, but ‘non‐natural’ enemy that does not typically attack P. kraunhiae under natural conditions, as well as a minor natural enemy, for biological control of this mealybug species.  相似文献   

17.
孙江华  张彦周 《昆虫学报》2003,46(4):466-472
湿地松粉蚧是于1988年传入我国广东省的一种重要林业外来入侵害虫。现在该害虫在我国的分布面积为35.52万公顷,严重影响着我国南方松林的生长健康。该害虫在其原产地美国南方并不造成大的危害,也不是一种主要害虫。只有当大量应用杀虫剂防治其它害虫时,由于杀死了其天敌,湿地松粉蚧种群才会明显增长。为控制这一外来入侵害虫,中美两国于1995年开展了从美国引进天敌防治广东省湿地松粉蚧的林业合作项目。本文报道了1996~1997年间在美国南方三个种子园使用杀虫剂防治球果种实害虫时,杀虫剂对湿地松粉蚧种群及其两种主要天敌有明显的影响,这也间接地说明了寄生性天敌对湿地松粉蚧在自然条件下的控制作用。相关分析显示湿地松粉蚧种群数量与其天敌是密切相关的,但杀虫剂可以打破这种平衡。这一方面说明从美国引进天敌防治湿地松粉蚧是可行的,另一方面也显示在美国采集湿地松粉蚧天敌应在使用过杀虫剂后的林分中。  相似文献   

18.
TwentySitona species were found in the Mediterranean region during surveys on 17 volunteer and/or cultivated species ofMedicago. The distribution of the weevils was analyzed using the 3 concepts of abundance, constancy and dominance. EightSitona species were consistently recorded on lucerne and medics; of these, 3 were “constants” and only 2,S. humeralis Stephens andS. lineatus Linnaeus, also “dominants” in the sites investigated. Sixteen species of natural enemies were identified (table 4), including 3 egg predators, 3 egg parasitoids, 1 entomogenous fungus, 2 nematodes and 5 parasitoids of adult weevils. The effect of each organism on theSitona population numbers was slight, not exceeding in most cases an average mortality of 15%. At high host densities however, the braconidMicroctonus aethiopoides Loan which is the preponderant parasitoid, caused estimated mortalities up to 80% during a single weevil generation. Noticeable changes in the relative importance of the natural enemies were observed between the areas surveyed, with onlyM. aethiopoides and the mymarid egg parasitoidPatasson lameerei Debauche occurring widely. Moroccan, French and Greek strains of these 2 parasitoids were forwarded to Australia for the biological control ofS. humeralis there.  相似文献   

19.
Honeydew-excreting hemipterans, such as mealybug pests, can be protected from their natural enemies by tending ants in return for honeydew, thereby compromising the aims of biological control. In this respect, antagonistic interactions between the ant Tapinoma nigerrimum, native to the Mediterranean basin, and the main natural enemies of both the vine mealybug (VMB), Planococcus ficus, and the citrus mealybug (CM), Planococcus citri, were assessed in laboratory conditions. Parasitism of vine and CMs by their respective parasitoids, Anagyrus sp. nr. pseudococci and Leptomastix dactylopii, was negatively affected by the ant T. nigerrimum. Similarly, T. nigerrimum was shown to significantly disrupt the predatory potential of ladybird larvae, Cryptolaemus montrouzieri, when foraging on host CMs. By contrast, the presence of the ant did not negatively influence the predatory activity of C. montrouzieri adults when feeding on CMs. Consequently, the encyrtid parasitoids A. sp. nr. pseudococci and L. dactylopii and the larval stage of the predator C. montrouzieri may be considered as T. nigerrimum-sensitive, whereas the adults of C. montrouzieri may be regarded as T. nigerrimum-resistant predators. Accordingly, the ant T. nigerrimum constitutes a threat to the biological control of mealybugs by either the encyrtids A. sp. nr. pseudococci and L. dactylopii or the larval stage of the ladybird C. montrouzieri. Hence, adequate control of T. nigerrimum is highly recommended before any release of these mealybugs' natural enemies.  相似文献   

20.
Honeydew produced by hemipterans is known as a possible kairomonal resource for parasitoids. The application of artificial honeydew effectively improves the performance of natural enemies. Aenasius bambawalei is a particularly dominant and aggressive endoparasitoid of the invasive mealybug Phenacoccus solenopsis. Our previous study showed that tending by the ghost ant Tapinoma melanocephalum significantly reduced the parasitism of A. bambawalei. We hypothesize that ghost ant tending influences host location of parasitoids by manipulating the composition of the honeydew produced by mealybugs. In this study, we tested whether the honeydew composition differs between treatments with and without ant attendance and whether changes in the honeydew influence the performance of A. bambawalei. Our results show that the sucrose concentration increased significantly in the ant‐attendance treatment but decreased when ant attendance was switched to an ant‐exclusion treatment; the inverse was true for the glucose concentration. Compared with the plastic honeydew treatment (mealybug with ant attendance), parasitoids spent much more time searching, had longer lifespans and showed higher parasitism on filter papers treated with natural honeydew (mealybug without any pre‐treatment) and those treated with convalescent honeydew (mealybug having experienced ant attendance and then switched to ant exclusion). These results support the hypothesis that ant tending influences the performance of parasitoids by manipulating honeydew composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号