首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spatial organization of metastable paramyxovirus fusion (F) and attachment glycoprotein hetero-oligomers is largely unknown. To further elucidate the organization of functional fusion complexes of measles virus (MeV), an archetype of the paramyxovirus family, we subjected central predictions of alternative docking models to experimental testing using three distinct approaches. Carbohydrate shielding through engineered N-glycans indicates close proximity of a membrane-distal, but not membrane-proximal, section of the MeV attachment (H) protein stalk domain to F. Directed mutagenesis of this section identified residues 111, 114, and 118 as modulators of avidity of glycoprotein interactions and determinants of F triggering. Stalk-length variation through deletion or insertion of HR elements at positions flanking this section demonstrates that the location of the stalk segment containing these residues cannot be altered in functional fusion complexes. In contrast, increasing the distance between the H head domains harboring the receptor binding sites and this section through insertion of structurally rigid α-helical domains with a pitch of up to approximately 75 Å downstream of stalk position 118 partially maintains functionality in transient expression assays and supports efficient growth of recombinant virions. In aggregate, these findings argue against specific protein-protein contacts between the H head and F head domains but instead support a docking model that is characterized by short-range contacts between the prefusion F head and the attachment protein stalk, possibly involving H residues 111, 114, and 118, and extension of the head domain of the attachment protein above prefusion F.Paramyxoviruses infect cells through fusion of the viral envelope with target cell membranes. For all members of the Paramyxovirinae subfamily, this involves the concerted action of two envelope glycoproteins, the fusion (F) and attachment (H, HN, or G, depending on the Paramyxovirinae genus) proteins. Both proteins feature short lumenal tails, a single transmembrane domain, and large ectodomains. The F protein, in type I orientation, forms homotrimers, while homodimers or homotetramers have been suggested as functional units for attachment proteins of different Paramyxovirinae subfamily members (7, 14, 28, 41, 49, 50, 66). For entry, upon receptor binding, the attachment protein is considered to initiate a series of conformational rearrangements in the metastable prefusion F protein (15, 77), which ultimately brings together transmembrane domains and fusion peptides and, thus, donor and target membranes (3, 32, 45, 53, 80).Multiple studies have demonstrated that specific interactions between compatible F and attachment proteins of paramyxovirinae are imperative for the formation of functional fusion complexes (6, 29, 36, 42, 43, 56, 75). However, the molecular nature of these interactions and the spatial organization of functional glycoprotein hetero-oligomers remain largely unknown. Individual ectodomain and partial ectodomain crystal structures have been obtained for different paramyxovirus F (13, 76, 77) and attachment (8, 14, 17, 28, 35, 79) proteins, respectively. For F, a stabilized human parainfluenza virus type 5 (HPIV5) ectodomain that is believed to represent a prefusion conformation folds into a globular head structure that is attached to the transmembrane domains through a helical stalk consisting of the membrane-proximal heptad repeat B (HR-B) domains (77). For the attachment protein, a globular head that harbors the receptor binding sites is considered to be connected to the transmembrane region through extended stalk domains (34, 78). Crystal structures of isolated head domains have been solved for several paramyxovirus attachment proteins, including measles virus (MeV) H, and reveal the six-blade propeller fold typical of sialidase structures (8, 14, 17, 28, 79). However, morbilliviruses recognize proteinaceous receptors (for MeV, the regulator of complement activation [CD46] and/or signaling lymphocytic activation molecule [SLAM], depending on the virus strain) (21, 40, 46, 51, 64, 65). X-ray data do not extend to the stalk domains, but circular dichroism analysis (78) and structure predictions (36, 78) support an α-helical coiled-coil configuration of the stalk.The nature of individual residues that engage in specific intermolecular interactions between glycoproteins of paramyxovirinae prior to refolding has been studied most extensively for the attachment protein. The stalk domains of several paramyxovirus HN proteins have been implicated in mediating specificity for their homotypic F proteins (18, 20, 43, 63, 70, 72). We have found that this extends to MeV and canine distemper virus H and, thus, to paramyxovirinae recognizing proteinaceous receptors (36), supporting the general hypothesis that F-interacting residues may reside in the stalk region of the attachment protein (30, 78).Considerably less information concerning the nature of F microdomains that mediate attachment protein specificity is available. Among the few exceptions are peptides derived from Newcastle disease virus (NDV) and Sendai virus F HR-B domains, which interact with soluble variants of the respective HN proteins in vitro (25, 67). Multiple domains have been suggested to mediate specificity of HPIV2 F for its HN (69). However, a conclusive N-glycan shielding study (43) and structural information (77, 78) argue against direct contacts between NDV F HR-B domains and HN in native glycoprotein complexes. Thus, the role of individual HPIV2 F residues in HN binding is unclear (25, 43).Building on the observation that MeV H is able to engage in productive heterotypic interactions with F proteins derived from some but not all isolates of closely related canine distemper virus, we have recently identified residues in morbillivirus F (MeV F residue 121) and H (H stalk residues 110 to 114) that interdependently contribute to physical MeV glycoprotein interaction and F triggering for fusion (36). While these residues could mediate reciprocal glycoprotein specificity through long-range effects, molecular modeling of the MeV H stalk in an α-helical conformation has posited F residue 121 at the same level above the viral envelope as H residues 110 to 114, making direct contacts structurally conceivable (36). This spatial organization of functional fusion complexes furthermore provides a comprehensive explanation for previous demonstrations of a specific role for attachment protein stalk domains of paramyxovirinae in functional and physical interactions with F (18, 43, 63, 70, 72). However, this “staggered-head” model mandates positioning the globular head of the attachment protein above the prefusion F trimer (36), as opposed to a suggested “parallel-head” alignment of the glycoproteins (31, 47). The latter is mostly based on transmission electron microscopy micrographs of viral particles apparently showing glycoprotein spikes of equal length (33). Unfortunately, these images lack the resolution for an identification of the molecular nature of the spikes (attachment or F protein) or the distinguishing between densely packaged H and F head domains of different heights and laterally aligned head domains. Indeed, a recent single-particle reconstruction based on cryo-electron microscopy images of HPIV5 particles revealed that defined spikes correspond to F in a postfusion conformation, which was interpreted as a product of possible premature F refolding (38). These two-dimensional images of heavy-metal-stained particles did not reveal F spikes in a prefusion conformation. Rather, a dense surface layer was considered to correspond to prefusion glycoprotein hetero-oligomers (38). In addition to further-advanced image reconstructions, biochemical assessment of alternative docking modes is imperative for the elucidation of the organization of functional fusion complexes of paramyxovirinae.In this study, we subjected central predictions of the hypothetical alignment models to experimental analysis. By employing carbohydrate shielding, directed mutagenesis, and variation of the length of the H stalk domain, we examined the proximity of different regions of the H stalk to F, probed a role of individual residues around the previously identified H stalk section from positions 110 to 114 in the formation of functional fusion complexes, tested the effect of varying the length of the H stalk membrane proximal and membrane distal to this section, and explored the general possibility of whether specific contacts between the prefusion F and H head domains are required for F triggering. Experimental data were interpreted in the light of a working model of MeV glycoprotein hetero-oligomers prior to receptor binding.  相似文献   

2.
Measles virus (MV) entry requires at least 2 viral proteins, the hemagglutinin (H) and fusion (F) proteins. We describe the rescue and characterization of a measles virus with a specific mutation in the stalk region of H (I98A) that is able to bind normally to cells but infects at a lower rate than the wild type due to a reduction in fusion triggering. The mutant H protein binds to F more avidly than the parent H protein does, and the corresponding virus is more sensitive to inhibition by fusion-inhibitory peptide. We show that after binding of MV to its receptor, H-F dissociation is required for productive infection.Measles virus (MV) infection requires binding of the hemagglutinin (H) protein to its cognate receptors (9, 20, 21, 29, 41) while the fusion (F) protein triggers membrane lipid mixing and fusion. The H protein is a type II transmembrane homodimeric, disulfide-linked glycoprotein (33). The F protein is a type I membrane glycoprotein that exists as a homotrimeric complex. The protein is cleaved by furin in the trans-Golgi network into a metastable heterodimer with a membrane-spanning F1 domain and a membrane-distal F2 domain (16). Expressed alone, neither H nor F leads to membrane fusion, and therefore, both proteins are required and have to interact for productive infection of a target cell (46). There is evidence that these interactions start within the endoplasmic reticulum (34).The H proteins of Paramyxoviridae family members have a globular head with a six-blade β-propellor structure that is responsible for receptor binding (4, 7, 13), a stalk region composed of alpha-helical coiled coils (18, 48) that anchors the complex to the plasma membrane, and a short cytoplasmic domain that can interact with the matrix (M) protein and modulate fusion (2). Given that the F protein does not interact with a receptor on the target cell but undergoes conformational changes to enable membrane fusion, it seems likely that the F protein must interact with the H protein that enables fusion (14, 19, 23, 24, 35, 47). The molecular interactions between the F and H proteins are being increasingly understood (6, 8, 24, 25, 30, 35, 42). Hummel and Bellini have described a mutation in the H glycoprotein where threonine replaced isoleucine 98, which led to loss of fusion in chronically infected cells, but the virus was not rescued (15). Corey and Iorio performed alanine-scanning mutagenesis to determine the role of specific, membrane-proximal residues in the stalk region of the H protein responsible for H-F interactions (6). Substitution of alanine for specific residues in this region altered cell-to-cell fusion and the strength of the H-F interaction in transient-transfection experiments (6). Replacement of isoleucine with alanine at position 98 reduced fusion but did not significantly alter hemadsorption, implying that binding of the mutant H protein to CD46 was not affected (6). More recently, Paal et al. showed that the H protein can tolerate significant additions to its alpha-helical coiled coils without loss of binding or fusion in transient-transfection assays (30). Although these studies confirm the importance of the interactions between the H protein stalk and the metastable F protein for enabling fusion after receptor binding, the exact steps leading to fusion are still unclear. Moreover, studies evaluating H-F interactions were performed with transient protein expression and not in the presence of the actual virus. This is potentially an important shortcoming since the M protein can modulate infection and fusion (1).  相似文献   

3.
4.
Human respiratory syncytial virus (HRSV) fusion (F) protein is an essential component of the virus envelope that mediates fusion of the viral and cell membranes, and, therefore, it is an attractive target for drug and vaccine development. Our aim was to analyze the neutralizing mechanism of anti-F antibodies in comparison with other low-molecular-weight compounds targeted against the F molecule. It was found that neutralization by anti-F antibodies is related to epitope specificity. Thus, neutralizing and nonneutralizing antibodies could bind equally well to virions and remained bound after ultracentrifugation of the virus, but only the former inhibited virus infectivity. Neutralization by antibodies correlated with inhibition of cell-cell fusion in a syncytium formation assay, but not with inhibition of virus binding to cells. In contrast, a peptide (residues 478 to 516 of F protein [F478-516]) derived from the F protein heptad repeat B (HRB) or the organic compound BMS-433771 did not interfere with virus infectivity if incubated with virus before ultracentrifugation or during adsorption of virus to cells at 4°C. These inhibitors must be present during virus entry to effect HRSV neutralization. These results are best interpreted by asserting that neutralizing antibodies bind to the F protein in virions interfering with its activation for fusion. Binding of nonneutralizing antibodies is not enough to block this step. In contrast, the peptide F478-516 or BMS-433771 must bind to F protein intermediates generated during virus-cell membrane fusion, blocking further development of this process.Human respiratory syncytial virus (HRSV), a member of the Pneumovirus genus of the Paramyxoviridae family, is the main cause of severe lower respiratory tract infections in very young children (36), and it is a pathogen of considerable importance in the elderly (24, 26) and in immunocompromised adults (22). Currently, there is no effective vaccine against the virus although it is known that passive administration of neutralizing antibodies to individuals at high risk is an effective immunoprophylaxis (37, 38).The HRSV genome is a single-stranded negative-sense RNA molecule of approximately 15 kb that encodes 11 proteins (16, 53). Two of these proteins are the main surface glycoproteins of the virion. These are (i) the attachment (G) protein, which mediates virus binding to cells (44), and (ii) the fusion (F) protein, which promotes both fusion of the viral and cell membranes at the initial stages of the infectious cycle and fusion of the membrane of infected cells with those of adjacent cells to form characteristic syncytia (72). These two glycoproteins are the only targets of neutralizing antibodies either induced in animal models (19, 63, 65, 70) or present in human sera (62).The G protein is a highly variable type II glycoprotein that shares neither sequence identity nor structural features with the attachment protein of other paramyxoviruses (75). It is synthesized as a precursor of about 300 amino acids (depending on the strain) that is modified posttranslationally by the addition of a large number of N- and O-linked oligosaccharides and is also palmitoylated (17). The G protein is oligomeric (probably a homotetramer) (23) and promotes binding of HRSV to cell surface proteoglycans (35, 40, 49, 67). Whether this is the only interaction of G with cell surface components is presently unknown.The F protein is a type I glycoprotein that is synthesized as an inactive precursor of 574 amino acids (F0) which is cleaved by furin during transport to the cell surface to yield two disulfide-linked polypeptides, F2 from the N terminus and F1 from the C terminus (18). Like other viral type I fusion proteins, the mature F protein is a homotrimer which is in a prefusion, metastable, conformation in the virus particle. After fusion, the F protein adopts a highly stable postfusion conformation. Stability of the postfusion conformation is determined to great extent by two heptad repeat (HR) sequences, HRA and HRB, present in the F1 chain. Mixtures of HRA and HRB peptides form spontaneously heterotrimeric complexes (43, 51) that assemble in six-helix bundles (6HB), consisting of an internal core of three HRA helices surrounded by three antiparallel HRB helices, as determined by X-ray crystallography (79).The three-dimensional (3D) structure of the HRSV F protein has not been solved yet. Nevertheless, the structures of the pre- and postfusion forms of two paramyxovirus F proteins have revealed substantial conformational differences between the pre- and postfusion conformations (77, 78). The present hypothesis about the mechanism of membrane fusion mediated by paramyxovirus F proteins proposes that, following binding of the virus to the cell surface, the prefusion form of the F glycoprotein is activated, and membrane fusion is triggered. The F protein experiences then a series of conformational changes which include the exposure of a hydrophobic region, called the fusion peptide, and its insertion into the target membrane. Subsequent refolding of this intermediate leads to formation of the HRA and HRB six-helix bundle, concomitant with approximation of the viral and cell membranes that finally fuse, placing the fusion peptide and the transmembrane domain in the same membrane (4, 20). The formation of the 6HB and the associated free energy change are tightly linked to the merger of the viral and cellular membranes (60).Antibodies play a major role in protection against HRSV. Animal studies have demonstrated that immunization with either F or G glycoproteins induces neutralizing antibodies and protects against a viral challenge (19, 63, 70). Furthermore, transfer of these antibodies (31, 56) or of anti-F or anti-G monoclonal antibodies (MAbs) protects mice, cotton rats, or calves against either a human or bovine RSV challenge, respectively (65, 68, 73). Likewise, infants at high risk of severe HRSV disease are protected by the prophylactic administration of immunoglobulins with high anti-HRSV neutralizing titers (33). Finally, a positive correlation was found between high titers of serum neutralizing antibodies and protection in adult volunteers challenged with HRSV (34, 74), while an inverse correlation was found between high titers of neutralizing antibodies and risk of infection in children (29) and in the elderly (25).Whereas all the anti-G monoclonal antibodies reported to date are poorly neutralizing (1, 28, 48, 71), some anti-F monoclonal antibodies have strong neutralization activity (1, 3, 5, 28, 46). It is believed that HRSV neutralization by anti-G antibodies requires simultaneous binding of several antibodies to different epitopes, leading to steric hindrance for interaction of the G glycoprotein with the cell surface. Indeed, it has been shown that neutralization is enhanced by mixtures of anti-G monoclonal antibodies (1, 50), mimicking the effect of polyclonal anti-G antibodies. In contrast, highly neutralizing anti-F monoclonal antibodies do not require cooperation by other antibodies to block HRSV infectivity efficiently (1).In addition to neutralizing antibodies, other low-molecular-weight compounds directed against the F protein are potent inhibitors of HRSV infectivity. Synthetic peptides that reproduce sequences of heptad repeat B inhibit both membrane fusion promoted by the F protein and HRSV infectivity (42). Also, other small molecules obtained by chemical synthesis have been shown to interact with F protein and inhibit HRSV infectivity. These HRSV entry inhibitors have been the topic of intense research in recent years (55).This study explores the mechanisms of HRSV neutralization by different inhibitors of membrane fusion, including anti-F monoclonal antibodies, an HRB peptide, and the synthetic compound BMS-433771 (13-15). The results obtained indicate that antibodies and low-molecular-weight compounds block membrane fusion at different stages during virus entry.  相似文献   

5.
Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKΔ31-47, gKΔ31-68, and gKΔ31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKΔ31-47 and gKΔ31-117 exhibited a gK-null (ΔgK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKΔ31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKΔ31-47 and gKΔ31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBΔ28syn) caused extensive virus-induced cell fusion. However, the gBΔ28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKΔ31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKΔ31-68, ΔgK, or UL20-null virus. The gKa peptide complemented the gKΔ31-47 and gKΔ31-68 mutant viruses for infectious-virus production and for gKΔ31-68/gBΔ28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress.Herpes simplex virus type 1 (HSV-1) specifies at least 11 virally encoded glycoproteins, as well as several nonglycosylated and lipid-anchored membrane-associated proteins, which serve important functions in virion infectivity and virus spread. Although cell-free enveloped virions can efficiently spread viral infection, virions can also spread by causing cell fusion of adjacent cellular membranes. Virus-induced cell fusion, which is caused by viral glycoproteins expressed on infected cell surfaces, enables transmission of virions from one cell to another, avoiding extracellular spaces and exposure of free virions to neutralizing antibodies (reviewed in reference 56). Most mutations that cause extensive virus-induced cell-to-cell fusion (syncytial or syn mutations) have been mapped to at least four regions of the viral genome: the UL20 gene (5, 42, 44); the UL24 gene (37, 58); the UL27 gene, encoding glycoprotein B (gB) (9, 51); and the UL53 gene, coding for gK (7, 15, 35, 53, 54, 57).Increasing evidence suggests that virus-induced cell fusion is mediated by the concerted action of glycoproteins gD, gB, and gH/gL. Recent studies have shown that gD interacts with both gB and gH/gL (1, 2). Binding of gD to its cognate receptors, including Nectin-1, HVEM, and others (12, 29, 48, 59, 60, 62, 63), is thought to trigger conformation changes in gH/gL and gB that cause fusion of the viral envelope with cellular membranes during virus entry and virus-induced cell fusion (32, 34). Transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (49, 68). However, this phenomenon does not accurately model viral fusion, because other viral glycoproteins and membrane proteins known to be important for virus-induced cell fusion are not required (6, 14, 31). Specifically, gK and UL20 were shown to be absolutely required for virus-induced cell fusion (21, 46). Moreover, syncytial mutations within gK (7, 15, 35, 53, 54, 57) or UL20 (5, 42, 44) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than wild-type virus into susceptible cells (25). Furthermore, transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while coexpression of the wild-type gK with gB, gD, and gH/gL inhibited cell fusion (3).Glycoproteins gB and gH are highly conserved across all subfamilies of herpesviruses. gB forms a homotrimeric type I integral membrane protein, which is N glycosylated at multiple sites within the polypeptide. An unusual feature of gB is that syncytial mutations that enhance virus-induced cell fusion are located exclusively in the carboxyl terminus of gB, which is predicted to be located intracellularly (51). Single-amino-acid substitutions within two regions of the intracellular cytoplasmic domain of gB were shown to cause syncytium formation and were designated region I (amino acid [aa] positions 816 and 817) and region II (aa positions 853, 854, and 857) (9, 10, 28, 69). Furthermore, deletion of 28 aa from the carboxyl terminus of gB, disrupting the small predicted alpha-helical domain H17b, causes extensive virus-induced cell fusion as well as extensive glycoprotein-mediated cell fusion in the gB, gD, and gH/gL transient-coexpression system (22, 49, 68). The X-ray structure of the ectodomain of gB has been determined and is predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB. Therefore, perturbation of the carboxyl terminus of gB may alter the conformation of the amino terminus of gB, thus favoring one of the two predicted conformational structures that causes membrane fusion (34).The UL53 (gK) and UL20 genes encode multipass transmembrane proteins of 338 and 222 aa, respectively, which are conserved in all alphaherpesviruses (15, 42, 55). Both proteins have multiple sites where posttranslational modification can occur; however, only gK is posttranslationally modified by N-linked carbohydrate addition (15, 35, 55). The specific membrane topologies of both gK and UL20 protein (UL20p) have been predicted and experimentally confirmed using epitope tags inserted within predicted intracellular and extracellular domains (18, 21, 44). Syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (18), while syncytial mutations of UL20 are located within the amino terminus of UL20p, shown to be located intracellularly (44). A series of recent studies have shown that HSV-1 gK and UL20 functionally and physically interact and that these interactions are necessary for their coordinate intracellular transport and cell surface expression (16, 18, 21, 26, 45). Specifically, direct protein-protein interactions between the amino terminus of HSV-1 UL20 and gK domain III, both of which are localized intracellularly, were recently demonstrated by two-way coimmunoprecipitation experiments (19).According to the most prevalent model for herpesvirus intracellular morphogenesis, capsids initially assemble within the nuclei and acquire a primary envelope by budding into the perinuclear spaces. Subsequently, these virions lose their envelope through fusion with the outer nuclear lamellae. Within the cytoplasm, tegument proteins associate with the viral nucleocapsid and final envelopment occurs by budding of cytoplasmic capsids into specific trans-Golgi network (TGN)-associated membranes (8, 30, 47, 70). Mature virions traffic to cell surfaces, presumably following the cellular secretory pathway (33, 47, 61). In addition to their significant roles in virus-induced cell fusion, gK and UL20 are required for cytoplasmic virion envelopment. Viruses with deletions in either the gK or the UL20 gene are unable to translocate from the cytoplasm to extracellular spaces and accumulated as unenveloped virions in the cytoplasm (5, 15, 20, 21, 26, 35, 36, 38, 44, 55). Current evidence suggests that the functions of gK and UL20 in cytoplasmic virion envelopment and virus-induced cell fusion are carried out by different, genetically separable domains of UL20p. Specifically, UL20 mutations within the amino and carboxyl termini of UL20p allowed cotransport of gK and UL20p to cell surfaces, virus-induced cell fusion, and TGN localization, while effectively inhibiting cytoplasmic virion envelopment (44, 45).In this paper, we demonstrate that the amino terminus of gK expressed as a free peptide of 82 aa (gKa) is transported to infected cell surfaces by viral proteins other than gK or UL20p and facilitates virus-induced cell fusion caused by syncytial mutations in the carboxyl terminus of gB. Thus, functional domains of gK can be genetically separated, as we have shown previously (44, 45), as well as physically separated into different peptide portions that retain functional activities of gK. These results are consistent with the hypothesis that the amino terminus of gK directly or indirectly interacts with and modulates the fusogenic properties of gB.  相似文献   

6.
The arenavirus envelope glycoprotein (GPC) initiates infection in the host cell through pH-induced fusion of the viral and endosomal membranes. As in other class I viral fusion proteins, this process proceeds through a structural reorganization in GPC in which the ectodomain of the transmembrane fusion subunit (G2) engages the host cell membrane and subsequently refolds to form a highly stable six-helix bundle structure that brings the two membranes into apposition for fusion. Here, we describe a G2-directed monoclonal antibody, F100G5, that prevents membrane fusion by binding to an intermediate form of the protein on the fusion pathway. Inhibition of syncytium formation requires that F100G5 be present concomitant with exposure of GPC to acidic pH. We show that F100G5 recognizes neither the six-helix bundle nor the larger trimer-of-hairpins structure in the postfusion form of G2. Rather, Western blot analysis using recombinant proteins and a panel of alanine-scanning GPC mutants revealed that F100G5 binding is dependent on an invariant lysine residue (K283) near the N terminus of G2, in the so-called fusion peptide that inserts into the host cell membrane during the fusion process. The F100G5 epitope is located in the internal segment of the bipartite GPC fusion peptide, which also contains four conserved cysteine residues, raising the possibility that this fusion peptide may be highly structured. Collectively, our studies indicate that F100G5 identifies an on-path intermediate form of GPC. Binding to the transiently exposed fusion peptide may interfere with G2 insertion into the host cell membrane. Strategies to effectively target fusion peptide function in the endosome may lead to novel classes of antiviral agents.Enveloped viruses enter their target cells through fusion of the virus and cell membranes, in a process promoted by the viral envelope glycoprotein. For some viruses, such as human immunodeficiency virus (HIV), entry is initiated by interaction of the envelope glycoprotein with cell surface receptor proteins. Other viruses, such as influenza virus, are endocytosed and membrane fusion is triggered by exposure to acidic pH in the maturing endosome. The subsequent merger of the viral and cell membranes is accomplished through a major structural reorganization of the envelope glycoprotein. Antiviral strategies that target virus entry by using neutralizing antibodies or small-molecule fusion inhibitors can, in many cases, prevent virus infection and disease.The Arenaviridae comprise a diverse group of rodent-borne viruses, some of which are responsible for severe hemorrhagic fevers in humans. Lassa fever virus (LASV) is endemic in western Africa (59), and at least five New World species are recognized to cause fatal disease in the Americas, including the Argentine hemorrhagic fever virus Junín (JUNV) (63). New pathogenic arenavirus species continue to emerge from their distinct animal reservoirs (1, 11, 24). At present, there are no licensed vaccines or effective therapies to address the threat of arenavirus infection.Arenaviruses are enveloped, negative-strand RNA viruses whose bipartite genome encodes ambisense expression of four viral proteins (12, 22). The arenavirus envelope glycoprotein, GPC, is a member of the class I virus fusion proteins (33, 40, 75), a group that includes HIV Env, influenza virus hemagglutinin (HA), and paramyxovirus F protein. These envelope glycoproteins share several salient features. The precursor glycoproteins assemble as trimeric complexes and are subsequently rendered competent for membrane fusion by a proteolytic cleavage that results in the formation of the mature receptor-binding and transmembrane fusion subunits. The GPC precursor glycoprotein is cleaved by the cellular SKI-1/S1P protease (6, 51, 54) to generate the respective G1 and G2 subunits, which remain noncovalently associated. The ectodomain of the class I fusion subunit is distinguished by the presence of two 4-3 heptad repeat (HR1 and HR2) sequences that, in the course of membrane fusion, refold to form the now-classical six-helix bundle structure, which defines this class of envelope glycoproteins. Unlike other class I fusion proteins, GPC also contains a cleaved and stable signal peptide (SSP) as a third and essential subunit in the mature complex (2, 32, 69, 77, 81).Arenavirus infection is initiated by G1 binding to a cell surface receptor. The pathogenic clade B New World arenaviruses utilize transferrin receptor 1 (TfR1) for entry (1, 64, 65), whereas those in clades A and C, as well as the Old World viruses, bind α-dystroglycan and/or an unknown receptor (15, 34, 71). The virion particle is subsequently endocytosed (9), and membrane fusion is initiated by acidification in the maturing endosome (17, 28, 29). pH-dependent activation of GPC is modulated through a unique interaction between SSP and G2 (79, 80) and can be targeted by small-molecule inhibitors that block membrane fusion (76) and protect against arenavirus infection (8, 52).A generally accepted model for membrane fusion by the class I envelope glycoproteins (reviewed in references 45 and 73) posits that the native complex exists in a metastable state that is established on proteolytic maturation of the biosynthetic precursor. Upon activation, whether by acidic pH in the endosome or receptor binding at the plasma membrane, the fusion subunit that was sequestered in the prefusion state is exposed and undergoes a series of dramatic conformational changes leading to membrane fusion. In this process, a hydrophobic region at or near the N terminus of the fusion subunit (the fusion peptide) inserts into the host cell membrane, thus allowing the protein to bridge the two membranes. This so-called prehairpin intermediate subsequently collapses upon itself to form the highly stable six-helix bundle structure, in which the three HR2 helices pack into hydrophobic grooves on the trimeric HR1 coiled-coil in an antiparallel manner, bringing the virus and cell membranes into apposition. Free energy made available in the formation of this stable structure is thought to drive fusion of the lipid bilayers. Peptides that correspond in sequence to HR2 (C-peptides) bind to the putative prehairpin intermediate and interfere with its refolding, thereby preventing membrane fusion (18, 57, 74). While the structure of the six-helix bundle core has been elucidated in atomic detail (45, 73), information regarding the molecular pathway leading to this postfusion state is largely indirect. Indeed, the prehairpin intermediate is conceptualized through the activity of C-peptide fusion inhibitors (57, 74).In this report, we describe a G2-directed monoclonal antibody (MAb), F100G5, that recognizes a pH-induced intermediate of JUNV GPC and prevents GPC-mediated membrane fusion. This MAb binds at or near the internal fusion peptide of G2 and may act by interfering with its penetration into the host cell membrane. These studies highlight the feasibility of targeting short-lived GPC intermediates for inhibition of membrane fusion.  相似文献   

7.
8.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   

9.
10.
11.
12.
The deadly paramyxovirus Nipah virus (NiV) contains a fusion glycoprotein (F) with canonical structural and functional features common to its class. Receptor binding to the NiV attachment glycoprotein (G) triggers F to undergo a two-phase conformational cascade: the first phase progresses from a metastable prefusion state to a prehairpin intermediate (PHI), while the second phase is marked by transition from the PHI to the six-helix-bundle hairpin. The PHI can be captured with peptides that mimic F''s heptad repeat regions, and here we utilized a NiV heptad repeat peptide to quantify PHI formation and the half-lives (t1/2) of the first and second fusion cascade phases. We found that ephrinB2 receptor binding to G triggered ∼2-fold more F than that triggered by ephrinB3, consistent with the increased rate and extent of fusion observed with ephrinB2- versus ephrinB3-expressing cells. In addition, for a series of hyper- and hypofusogenic F mutants, we quantified F-triggering capacities and measured the kinetics of their fusion cascade phases. Hyper- and hypofusogenicity can each be manifested through distinct stages of the fusion cascade, giving rise to vastly different half-lives for the first (t1/2, 1.9 to 7.5 min) or second (t1/2, 1.5 to 15.6 min) phase. While three mutants had a shorter first phase and a longer second phase than the wild-type protein, one mutant had the opposite phenotype. Thus, our results reveal multiple critical parameters that govern the paramyxovirus fusion cascade, and our assays should help efforts to elucidate other class I membrane fusion processes.Nipah (NiV) and Hendra (HeV) viruses are emerging members of the new Paramyxoviridae genus Henipavirus (12, 19). The Paramyxoviridae family comprises important viral pathogens, such as measles, mumps, human parainfluenza, respiratory syncytial, and Newcastle disease viruses and the henipaviruses (HNV), and NiV is its deadliest known member (4, 5). NiV has a broad host range and causes respiratory and neurological symptoms that often lead to encephalitis and a mortality rate of up to 75% in humans (21, 47). It can also spread efficiently and cause morbidity in economically important livestock (21). NiV is a biosafety level 4 (BSL4) pathogen and is considered a select agent with bio- and agro-terrorism potential. Both animal-to-human and human-to-human transmissions have been documented (4, 5), underscoring the need for research and treatment development. Since microvascular endothelial cell-cell fusion (syncytium formation) is a pathognomonic hallmark of NiV infection (50), understanding virus-cell and cell-cell membrane fusion should assist in the development of therapeutics to target this aspect of NiV pathobiology.Paramyxovirus membrane fusion requires the coordinated action of the attachment (G, HN, or H) and fusion (F) glycoproteins, and numerous canonical structural and functional features of G/HN/H and F proteins are conserved among paramyxoviruses (20, 23, 46, 48). G/HN/H proteins have a receptor-binding globular domain formed by a six-bladed beta-propeller connected to its transmembrane anchor via a flexible stalk domain (10, 51). For NiV and HeV, both ephrinB2 (B2) and ephrinB3 (B3) can be used as cell receptors (8, 33, 34), although B2 appears to be the higher-affinity receptor (34). B2 or B3 receptors bind to and activate G, which in turn triggers a conformation cascade in F that leads to membrane fusion (1). HNV F proteins are trimeric class I fusion proteins with structural/functional features common to their class (23, 52). HNV F proteins are synthesized as precursors that are cleaved and hence activated into a metastable conformation, poised for enabling membrane fusion. Cleavage generates a new N terminus that contains a hydrophobic fusion peptide (48). For NiV and HeV, the precursor (F0) reaches the plasma membrane uncleaved, but endocytosis exposes F0 to cathepsin L in the endosomes, cleaving F0 to generate mature disulfide-linked F1 and F2 subunits that are trafficked back to the cell surface (14, 31). The structures of the retroviral Moloney murine leukemia virus p15E, lentiviral human immunodeficiency virus type 1 (HIV-1) gp41, Ebola virus GP2, influenza virus HA, and paramyxovirus SV5 and NiV-F fusion proteins all share similar trimeric coiled-coil core structures (6, 11, 17, 27, 53) and, in general, similar membrane fusion mechanisms (22, 23, 48).Receptor binding to paramyxoviral G/HN/H triggers a conformational cascade in F, leading to membrane fusion (Fig. (Fig.1).1). Although the determinants for F triggering on G/HN/H have not been defined clearly, evidence suggests that the stalk domain (7, 13, 24, 28, 29) and, at least for NiV, a region at the base of the globular domain of G (1) are involved in F triggering. Additionally, recent evidence indicates an interaction between the stalk region of the measles virus H protein and the globular domain of the cognate F protein (35). Once triggered, F progresses through a prehairpin intermediate (PHI) (Fig. 1A and B). In the PHI conformation, the fusion peptide is harpooned into the host cell membrane, and the N- and C-terminal heptad repeat domains (HR1 and HR2, respectively) are exposed. The HR domains then coalesce into the postfusion six-helix-bundle (6HB) hairpin conformation. In the 6HB, the transmembrane and fusion peptide domains are juxtaposed, bringing viral and target cell membranes together and driving membrane fusion (Fig. (Fig.1C)1C) (30, 48). Much evidence suggests that 6HB formation is coincident with membrane merger and that synthetic HR1 and HR2 peptides only bind to and inhibit fusion intermediates (e.g., PHI) prior to 6HB formation (9, 30, 37, 43, 48). Additionally, HR1 peptides can inhibit an earlier fusion intermediate than that inhibited by HR2 peptides (43), and HR2 peptides are invariably more potent inhibitors of fusion than HR1 peptides. HR2 peptides trap the PHI by binding to the radial interstices formed by the trimeric HR1 core, inhibiting 6HB formation and membrane fusion (22, 23, 48). Altogether, there is much evidence to support the fusion cascade shown in Fig. Fig.11 and the use of HR2 peptides to physically capture fusion intermediates (9, 30, 43, 48).Open in a separate windowFIG. 1.Nipah virus fusion cascade. The schematic shows the NiV fusion cascade broken down into three major stages. (A) EphrinB2 or ephrinB3 binding to NiV-G triggers the metastable NiV-F protein through allosteric mechanisms that are still being elucidated. (B) After F is triggered, it forms the PHI, in which a fusion peptide is harpooned into the host cell membrane. The PHI can be captured by peptides that mimic the NiV-F HR1 (orange-striped cylinder) or HR2 (green-striped cylinder) region and bind the F HR2 or HR1 region, respectively. (C) The HR1 and HR2 regions in the PHI coalesce to form the 6HB conformation, bringing the viral and cell membranes together and facilitating virus-host membrane fusion and viral entry. The viral membrane can be replaced by a cell membrane expressing the F and G glycoproteins in cell-cell fusion, resulting in syncytium formation. We term the transitions from A to B and from B to C phases I and II, respectively, of the fusion cascade. (D) Schematic representation of the F-triggering assay, showing its four main steps: (1) receptor binding at 4°C, (2) biotinylated HR2 peptide addition and induction of F triggering at 37°C, (3) fixation at 4°C with paraformaldehyde, and (4) signal amplification at 4°C. In the “time-of-addition” and “time-of-stopping” experiments, step 2 was modified as indicated in the text. The HR2 peptide (green hatched column) is shown with its N-terminal biotin modification (red star). Blue stars, streptavidin-APC; black, three-pronged symbols, activator; blue symbols with red octagons, enhancer.We previously developed a fluorescence-activated cell sorting (FACS)-based NiV-F-triggering assay by measuring the amount of HR2 peptide binding to F/G-expressing cells triggered by cell surface ephrinB2 (1). In this study, we further optimized our assay for robust quantification of HR2 peptide binding and used this assay to monitor the differential degree of F triggering induced by B2 or B3. In addition, through “time-of-addition” and “time-of-stopping” experiments (described below), we show that this HR2 binding assay can measure the half-lives of various fusion intermediates, i.e., the transition times from the prefusion (PF) state to PHI and from PHI to 6HB. Using a panel of hyper- and hypofusogenic mutants, we show that hyper- and hypofusogenicity can each be manifested through distinct effects on the half-lives of these fusion intermediates and/or the absolute amounts of F triggering. Thus, we elucidated the impacts of different mutations on individual steps of the fusion cascade. Since HR2 peptides can generally capture the PHI of class I fusion proteins, our assays should help efforts to understand fusion processes mediated by other class I fusion proteins.  相似文献   

13.
Members of the Paramyxovirinae subfamily rely on the concerted action of two envelope glycoprotein complexes, attachment protein H and the fusion (F) protein oligomer, to achieve membrane fusion for viral entry. Despite advances in X-ray information, the organization of the physiological attachment (H) oligomer in functional fusion complexes and the molecular mechanism linking H receptor binding with F triggering remain unknown. Here, we have applied an integrated approach based on biochemical and functional assays to the problem. Blue native PAGE analysis indicates that native H complexes extract predominantly in the form of loosely assembled tetramers from purified measles virus (MeV) particles and cells transiently expressing the viral envelope glycoproteins. To gain functional insight, we have established a bimolecular complementation (BiC) assay for MeV H, on the basis of the hypothesis that physical interaction of H with F complexes, F triggering, and receptor binding constitute distinct events. Having experimentally confirmed three distinct H complementation groups, implementation of H BiC (H-BiC) reveals that a high-affinity receptor-to-paramyxovirus H monomer stoichiometry below parity is sufficient for fusion initiation, that F binding and fusion initiation are separable in H oligomers, and that a higher relative amount of F binding-competent than F fusion initiation- or receptor binding-competent H monomers per oligomer is required for optimal fusion. By capitalizing on these findings, H-BiC activity profiles confirm the organization of H into tetramers or higher-order multimers in functional fusion complexes. Results are interpreted in light of a model in which receptor binding may affect the oligomeric organization of the attachment protein complex.Enveloped viruses gain access to target cells through fusion of viral and cellular membranes. This involves viral fusogenic envelope glycoprotein complexes that mediate membrane merger in a series of conformational rearrangements. For members of the Paramyxovirinae subfamily, fusion is accomplished by the concerted action of two glycoprotein complexes, the fusion (F) protein and the attachment protein (protein H, HN, or G, depending on the Paramyxovirinae genus) (21). Receptor binding by the attachment protein is thought to trigger refolding of the metastable F complex into the thermodynamically stable postfusion conformation and thus initiate the fusion event (20).Most paramyxoviruses require coexpression of homotypic envelope glycoproteins for efficient F triggering and membrane fusion (17, 45). This implicates specific protein-protein interactions between the F and the attachment protein in functional fusion complexes. All Paramyxovirinae attachment proteins form homo-oligomers. Their ectodomains are organized in a globular head domain that shows the six-blade propeller fold typical of sialidase structures (3, 5, 8, 15, 40, 49, 52) and a stalk domain connecting the head region to the transmembrane domain and short lumenal tail. Although no crystal information on the stalk domain is available, circular dichroism analyses of parainfluenza virus type 5 (PIV 5) HN (51) and structure predictions of measles virus (MeV) H and PIV 5 HN (22, 51) support an α-helical coiled-coil configuration of the stalk. Regions in the stalk have, furthermore, been implicated for several paramyxovirus HN proteins to mediate specificity for their homotypic F proteins (9, 10, 25, 45, 47). We have demonstrated that this extends to MeV H (22, 30), supporting the view that F-interacting residues may reside in the stalk region of the attachment protein (18, 30).Despite these advances, the effect of receptor binding on the attachment protein oligomer and the molecular mechanism linking receptor binding with F-protein refolding are poorly understood. MeV H head domains have been crystallized both free and complexed with soluble receptor in monomeric and dimeric forms (5, 15). Data available for attachment proteins of related Paramyxovirus family members, such as henipavirus G, and several HN proteins suggest that the tetramer (dimer of dimers) constitutes the physiological oligomer (2, 51, 52). By extension, this may equally apply to all attachment proteins of viruses of the Paramyxovirinae subfamily. Elucidating the oligomeric status of the attachment protein engaged in functional fusion complexes in situ will likely be paramount for the mechanistic understanding of paramyxovirus F triggering, given that no major conformational differences were observed between crystal structures of PIV 5 HN, human parainfluenza virus type 3 HN, henipavirus G, and MeV H solved alone or in complex with their receptor (3, 5, 8, 15, 40, 49, 52). It was, rather, hypothesized that receptor binding may affect the quaternary status of the attachment protein homo-oligomer, which could ultimately trigger F refolding (52). If a general theme applies to paramyxovirus entry, this brings into focus the question of whether a dimeric organization represents the physiological oligomer of native MeV H.Beyond the physical organization of the H oligomer, we have only begun to uncover some of the basic dynamics that govern the complex protein machineries required for membrane fusion and virus infection. For instance, it is unknown whether physical interaction of the attachment protein complex with F and induction of F triggering are separable events within an H oligomer, whether interaction of an H oligomer with multiple F complexes is required for optimal fusion activity, or even whether membrane fusion initiation requires engagement of every protein H monomer by the receptor.In the study described here, we have employed an integrated biochemical and functional approach to better understand some of the basic structural and mechanistic features of the MeV fusion complex. Blue native PAGE (BN-PAGE) analysis was used to test the organization of the native attachment protein oligomer extracted from purified viral particles and transiently transfected cells under different stringency conditions.Bimolecular protein complementation (BiC) allows the mechanistic assessment of multisubunit protein complexes. Application to the retrovirus envelope, for instance, has elucidated the interactions between HIV-1 gp120 and gp41 and the stoichiometry of the HIV-1 envelope trimer during entry (39, 50). By applying this concept to the paramyxovirus glycoprotein system, we have newly developed an H BiC (H-BiC) assay for MeV protein H that complements BN-PAGE data with functional information and probes the stoichiometric requirements for the organization of biologically active fusion complexes and the receptor-mediated initiation of fusion. Results are interpreted in light of current hypotheses regarding the possible effects of receptor binding on paramyxovirus attachment proteins.  相似文献   

14.
Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.Measles virus (MV), which belongs to the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a nonsegmented negative-strand RNA genome. The MV genome encodes six structural proteins: the nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins. The P gene also encodes two other accessory proteins, the C and V proteins. The C protein is translated from an alternative translational initiation site leading a different reading frame, and the V protein is synthesized from an edited mRNA. MV has two envelope glycoproteins, the F and H proteins. The former is responsible for envelope fusion, and the latter is responsible for receptor binding (12).Wild-type MV strains isolated in B95a cells and laboratory-adapted MV strains have distinct phenotypes (18). Wild-type MV strains can grow in B95a cells but not in Vero cells, while laboratory-adapted MV strains can grow in both B95a and Vero cells. Wild-type MV strains do not cause hemadsorption (HAd) in African green monkey red blood cells (AGM-RBC), while most of laboratory-adapted MV strains cause HAd. Importantly, wild-type MV strains are pathogenic and induce clinical signs that resemble human measles in experimentally infected monkeys while laboratory-adapted MV strains do not.One approach to identify amino acid substitutions responsible for these phenotypic differences is the comparison of a wild-type MV strain with a standard laboratory-adapted MV strain such as the Edmonston strain. With regard to the H protein, amino acid substitutions important for HAd activity and cell-cell fusion in tissue culture cells were identified by expressing the H proteins in mammalian cells (15, 21). Recently, Tahara et al. revealed that the M, H, and L proteins are responsible for efficient growth in Vero cells by constructing a series of recombinant viruses in which part of the genome of the wild-type MV was replaced with the corresponding sequences of the Edmonston strain (45, 46, 47).Another approach is the comparison of wild-type MV strains with their Vero cell-adapted MV strains. It was reported that Vero cell-adapted MV strains could be obtained by successive blind passages of wild-type MV strains in Vero cells (18, 24, 30, 43). Interestingly, in vivo and in vitro phenotypes of Vero cell-adapted MV strains were similar to those of laboratory-adapted standard MV strains (18, 19, 24, 30, 43). Comparison of the complete nucleotide sequences of the genomes of wild-type MV strains with those of Vero cell-adapted wild-type MV strains revealed amino acid substitutions in the P, C, V, M, H, and L proteins (27, 42, 48, 53).At present, these phenotypic differences are explained mainly by the receptor usage of MV. Wild-type MV strains can use signaling lymphocyte activation molecule (SLAM; also called CD150) but not CD46 as a cellular receptor, whereas laboratory-adapted MV strains can use both SLAM and CD46 as cellular receptors (7, 10, 16, 29, 56, 60).However, receptor usage per se cannot explain all of the phenotypic differences (20, 25, 48, 53). For example, recombinant Edmonston strains expressing wild-type H proteins can grow in Vero cells to some extent (17, 54). Several reports suggested the presence of the third MV receptor on Vero cells (14, 44, 54, 60). Other reports indicated the contribution of the M protein on cell-cell fusion and growth of MV in Vero cells (4, 27, 47). Recently, the unidentified epithelial cell receptor for MV was predicted in primary culture of human cells (1, 55) and several epithelial cell lines (23, 51). However, the identity of the third receptor on Vero cells and the unidentified epithelial cell receptor is not clear yet. Thus, the mechanism of Vero cell adaptation of wild-type MV is not completely understood.In order to understand the molecular mechanism of these phenotypic changes of wild-type MV strains during adaptation in Vero cells, we determined the complete nucleotide sequences of the genomes of the wild-type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strains (43) and examined the effect of individual amino acid substitutions using a mammalian cell expression system and reverse genetics. We show here that previously unrecognized new amino acid substitutions in the H and F proteins are important for MV adaptation and HAd activity.  相似文献   

15.
While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.Sendai virus (SeV), a murine parainfluenza virus (PIV), belongs to the genus Respirovirus within the family Paramyxoviridae (33). Sendai virus is the murine counterpart of human parainfluenza virus 1 (HPIV1), and these two viruses share high sequence homology and antigenic cross-reactivity (23, 38, 58). Both Sendai virus and HPIV1 cause respiratory diseases in their hosts that range from mild to severe, with the greatest morbidity and mortality occurring in immunocompromised hosts (3, 17). In pediatric medicine, HPIV1 is an important cause of bronchiolitis, pneumonia, and laryngotracheobronchitis, or croup (11). Other members of the genus Respirovirus include human and bovine forms of PIV3 (30).Like other paramyxoviruses, Sendai virus is an enveloped, nonsegmented, negative-strand RNA virus that invades host cells by fusion (F) protein-mediated membrane fusion at the plasma membrane (33). The receptor binding protein for Sendai virus, as well as the other parainfluenza viruses, is the hemagglutinin-neuraminidase (HN) protein. During viral entry, the HN protein binds sialic acid-containing receptors on the surfaces of host cells and then triggers the F protein to refold and cause membrane fusion (34, 40). Paramyxovirus replication occurs in the cytoplasm of infected cells, where the viral nucleocapsid is formed by the encapsidation of the viral genome with the viral nucleoprotein (N), phosphoprotein (P), and the large RNA-dependent RNA-polymerase (L) protein (33). The assembly and budding of infectious parainfluenza virions from the plasma membrane are mediated largely by the matrix (M) protein, which interacts with the viral nucleocapsid and the cytoplasmic tails of the HN and F proteins (56, 63).The paramyxovirus F protein mediates both virus-cell fusion and cell-cell fusion. Similar to other class I viral fusion proteins, paramyxovirus F proteins are expressed on the surfaces of infected cells and virions as trimers that are trapped in metastable (high energy) conformations (29, 54, 71, 73). In order to become activated for membrane fusion, uncleaved F0 precursor protein trimers must be cleaved into a fusion-capable complex formed by F1 and F2 subunits (55). Field isolates of Sendai virus that have a monobasic cleavage site are cleavage activated by tryptase Clara secreted from respiratory epithelial cells (32, 69) while the pantropic F1-R laboratory isolate of Sendai virus has a mutated cleavage site and is cleaved by more ubiquitously expressed proteases (41, 67). Paramyxovirus F proteins have several regions involved in F protein conformational changes during membrane fusion: a hydrophobic fusion peptide, two 4-3 heptad repeat regions (designated heptad repeat A [HRA] and HRB), a transmembrane domain, and a cytoplasmic tail. The prefusion form of the PIV5 F0 protein has a mushroom-like shape formed by a large globular head attached to a rod-like stalk formed by the HRB region (76). Upon triggering by the HN protein, the HRB region dissociates, the HRA region springs into a coiled coil, and the fusion peptide is inserted into the target membrane (52). Membrane fusion is catalyzed by the formation of a coiled-coil hairpin structure (2, 7, 75, 78), formed by the HRA and HRB regions, that juxtaposes the membrane-interacting fusion peptide and transmembrane domains (52). We recently performed a mutational analysis on a 10-residue sequence in the HRA region of the Sendai virus F protein (37) that forms a β-strand-turn-α-helix structure in the prefusion conformation and part of a triple-stranded coiled coil in the hairpin conformation (75, 76). The mutated residues were found to play important roles in regulating the activation and membrane fusion activity of the Sendai virus F protein, showing that F protein refolding is regulated by residues that undergo dramatic changes in secondary and tertiary structure between the prefusion and hairpin conformations.Upon triggering by the HN protein, cell surface-expressed F protein trimers mediate cell-cell fusion (syncytium formation) and extend infection in a local area (55). In nonpolarized epithelial cells, virus-induced syncytium formation has long been considered a hallmark of in vitro cytopathogenesis by respiratory paramyxoviruses. However, many questions remain regarding the extent of envelope glycoprotein expression, parainfluenza virus budding, and syncytium formation at the basolateral surfaces of polarized cells (4, 77). In an in vitro model of human airway epithelium (HAE), HPIV3 has been shown to infect ciliated epithelial cells exclusively, predominantly at the apical surface, causing little virus-mediated cytopathology, no spread of the virus beyond ciliated cells, and no syncytium formation (77). As the HAE model lacks innate and adaptive immune cells, this model would not reveal the formation of syncytia involving all cell types in the respiratory tract that are present during infection, including those that play a role in the host response to infection. In immunocompetent mice, the replication of field isolates of Sendai virus is restricted to the respiratory tract, and progeny virions bud from the apical surfaces of polarized epithelial cells (68). While syncytial cell formation in the bronchiolar epithelia of mice infected with Sendai virus has been reported previously (28), the timing of giant cell formation and its contribution to the spread of the virus and the disease it induces in the respiratory tract remain unknown.To test the hypothesis that the fusogenicity of the F protein contributes to the pathogenicity of Sendai virus in mice, the natural host of this virus, we generated two recombinant Sendai viruses containing F protein mutations in the heptad repeat A region that were found previously to either increase or decrease its fusogenic activity when the F protein was expressed from plasmid DNA constructs (37). In the present study, the effects of the F protein mutations on virus replication, F protein expression, F protein cleavage, and syncytium formation were characterized in vitro. The hyperfusogenic F-L179V virus was found to induce greater morbidity and mortality in DBA/2 mice than wild-type virus, whereas the hypofusogenic and attenuated F-K180Q virus was found to be much less pathogenic. After 1 week of infection, the F-L179V virus induced more extensive interstitial inflammation and necrosis in the lungs than the wild-type virus, including a greater number of syncytial cell masses. On the other hand, the attenuated F-K180Q virus caused much less extensive inflammation than wild-type virus and did not cause observable syncytium formation in the lungs. A comparison of 50% minimal lethal dose (MLD50) values, lung titers, and histopathologic changes reveals a correlation between the membrane fusion activity of the F protein and the virulence of Sendai virus in mice.  相似文献   

16.
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.Lassa virus (LASV) is a member of the family Arenaviridae, of which Lymphocytic choriomeningitis virus (LCMV) is the prototype. Arenaviruses comprise more than 20 species, divided into the Old World and New World virus complexes (19). The Old World arenaviruses include the human pathogenic LASV strains, Lujo virus, which was first identified in late 2008 and is associated with an unprecedented high case fatality rate in humans, the nonhuman pathogenic Ippy, Mobala, and Mopeia viruses, and the recently described Kodoko virus (10, 30, 49). The New World virus complex contains, among others, the South American hemorrhagic fever-causing viruses Junín virus, Machupo virus, Guanarito virus, Sabiá virus, and the recently discovered Chapare virus (22).Arenaviruses contain a bisegmented single-stranded RNA genome encoding the polymerase L, matrix protein Z, nucleoprotein NP, and glycoprotein GP. The bipartite ribonucleoprotein of LASV is surrounded by a lipid envelope derived from the plasma membrane of the host cell. The matrix protein Z has been identified as a major budding factor, which lines the interior of the viral lipid membrane, in which GP spikes are inserted (61, 75). The glycoprotein is synthesized as precursor protein pre-GP-C and is cotranslationally cleaved by signal peptidase into GP-C and the signal peptide, which exhibits unusual length, stability, and topology (3, 27, 28, 33, 70, 87). Moreover, the arenaviral signal peptide functions as trans-acting maturation factor (2, 26, 33). After processing by signal peptidase, GP-C of both New World and Old World arenaviruses is cleaved by the cellular subtilase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) into the distal subunit GP-1 and the membrane-anchored subunit GP-2 within the secretory pathway (5, 52, 63). For LCMV, it has been shown that GP-1 subunits are linked to each other by disulfide bonds and are noncovalently connected to GP-2 subunits (14, 24, 31). GP-1 is responsible for binding to the host cell receptor, while GP-2 mediates fusion between the virus envelope and the endosomal membrane at low pH due to a bipartite fusion peptide near the amino terminus (24, 36, 44). Sequence analysis of the LCMV GP-2 ectodomain revealed two heptad repeats that most likely form amphipathic helices important for this process (34, 86).In general, viral class I fusion proteins have triplets of α-helical structures in common, which contain heptad repeats (47, 73). In contrast, class II fusion proteins are characterized by β-sheets that form dimers in the prefusion status and trimers in the postfusion status (43). The class III fusion proteins are trimers that, unlike class I fusion proteins, were not proteolytically processed N-terminally of the fusion peptide, resulting in a fusion-active membrane-anchored subunit (39, 62). Previous studies with LCMV described a tetrameric organization of the glycoprotein spikes (14), while more recent data using a bacterially expressed truncated ectodomain of the LCMV GP-2 subunit pointed toward a trimeric spike structure (31). Due to these conflicting data regarding the oligomerization status of LCMV GP, it remains unclear to which class of fusion proteins the arenaviral glycoproteins belong.The state of oligomerization and the correct conformation of viral glycoproteins are crucial for membrane fusion during virus entry. The early steps of infection have been shown for several viruses to be dependent on the cholesterol content of the participating membranes (i.e., either the virus envelope or the host cell membrane) (4, 9, 15, 20, 21, 23, 40, 42, 53, 56, 76, 78, 79). In fact, it has been shown previously that entry of both LASV and LCMV is susceptible to cholesterol depletion of the target host cell membrane using methyl-β-cyclodextrin (MβCD) treatment (64, 71). Moreover, cholesterol not only plays an important role in the early steps during entry in the viral life cycle but also is critical in the virus assembly and release process. Several viruses of various families, including influenza virus, human immunodeficiency virus type 1 (HIV-1), measles virus, and Ebola virus, use the ordered environment of lipid raft microdomains. Due to their high levels of glycosphingolipids and cholesterol, these domains are characterized by insolubility in nonionic detergents under cold conditions (60, 72). Recent observations have suggested that budding of the New World arenavirus Junin virus occurs from detergent-soluble membrane areas (1). Assembly and release from distinct membrane microdomains that are detergent soluble have also been described for vesicular stomatitis virus (VSV) (12, 38, 68). At present, however, it is not known whether LASV requires cholesterol in its viral envelope for successful virus entry or whether specific membrane microdomains are important for LASV assembly and release.In this study, we first investigated the oligomeric state of the premature and mature LASV glycoprotein complexes. Since it has been shown for several membrane proteins that the oligomerization and conformation are dependent on cholesterol (58, 59, 76, 78), we further analyzed the dependence of the cholesterol content of the virus envelope on glycoprotein oligomerization and virus infectivity. Finally, we characterized the lipid membrane areas from which LASV is released.  相似文献   

17.
Clade B of the New World arenaviruses contains both pathogenic and nonpathogenic members, whose surface glycoproteins (GPs) are characterized by different abilities to use the human transferrin receptor type 1 (hTfR1) protein as a receptor. Using closely related pairs of pathogenic and nonpathogenic viruses, we investigated the determinants of the GP1 subunit that confer these different characteristics. We identified a central region (residues 85 to 221) in the Guanarito virus GP1 that was sufficient to interact with hTfR1, with residues 159 to 221 being essential. The recently solved structure of part of the Machupo virus GP1 suggests an explanation for these requirements.Arenaviruses are bisegmented, single-stranded RNA viruses that use an ambisense coding strategy to express four proteins: NP (nucleoprotein), Z (matrix protein), L (polymerase), and GP (glycoprotein). The viral GP is sufficient to direct entry into host cells, and retroviral vectors pseudotyped with GP recapitulate the entry pathway of these viruses (5, 13, 24, 31). GP is a class I fusion protein comprising two subunits, GP1 and GP2, cleaved from the precursor protein GPC (4, 14, 16, 18, 21). GP1 contains the receptor binding domain (19, 28), while GP2 contains structural elements characteristic of viral membrane fusion proteins (8, 18, 20, 38). The N-terminal stable signal peptide (SSP) remains associated with the mature glycoprotein after cleavage (2, 39) and plays a role in transport, maturation, and pH-dependent fusion (17, 35, 36, 37).The New World arenaviruses are divided into clades A, B, and C based on phylogenetic relatedness (7, 9, 11). Clade B contains the human pathogenic viruses Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia, and Chapare, which cause severe hemorrhagic fevers in South America (1, 10, 15, 26, 34). Clade B also contains the nonpathogenic viruses Amapari (AMAV), Cupixi, and Tacaribe (TCRV), although mild disease has been reported for a laboratory worker infected with TCRV (29).Studies with both viruses and GP-pseudotyped retroviral vectors have shown that the pathogenic clade B arenaviruses use the human transferrin receptor type 1 (hTfR1) to gain entry into human cells (19, 30). In contrast, GPs from nonpathogenic viruses, although capable of using TfR1 orthologs from other species (1), cannot use hTfR1 (1, 19) and instead enter human cells through as-yet-uncharacterized hTfR1-independent pathways (19). In addition, human T-cell lines serve as useful tools to distinguish these GPs, since JUNV, GTOV, and MACV pseudotyped vectors readily transduce CEM cells, while TCRV and AMAV GP vectors do not (27; also unpublished data). These properties of the GPs do not necessarily reflect a tropism of the pathogenic viruses for human T cells, since viral tropism is influenced by many factors and T cells are not a target for JUNV replication in vivo (3, 22, 25).  相似文献   

18.
Of the four required herpes simplex virus (HSV) entry glycoproteins, the precise role of gH-gL in fusion remains the most elusive. The heterodimer gH-gL has been proposed to mediate hemifusion after the interaction of another required glycoprotein, gD, with a receptor. To identify functional domains of HSV-1 gH, we generated 22 randomized linker-insertion mutants. Analyses of 22 gH mutants revealed that gH is relatively tolerant of insertion mutations, as 15 of 22 mutants permitted normal processing and transport of gH-gL to the cell surface. gH mutants that were not expressed well at the cell surface did not function in fusion or viral entry. The screening of gH mutants for function revealed the following: (i) for wild-type gH and some gH mutants, fusion with nectin-1-expressing target cells occurred more rapidly than with herpesvirus entry mediator (HVEM)-expressing target cells; (ii) some gH mutants reduced the rate of cell fusion without abrogating fusion completely, indicating that gH may play a role in governing the kinetics of fusion and may be responsible for a rate-limiting first stage in HSV-1 fusion; and (iii) only one gH mutant, located within the short cytoplasmic tail, completely abrogated function, indicating that the gH cytoplasmic tail is crucial for cell fusion and viral infectivity.Herpes simplex virus (HSV), an enveloped neurotropic virus, infects target cells via membrane fusion, a process executed by viral fusion proteins capable of inserting into target membranes. Unlike many enveloped viruses that induce fusion through the activity of a single viral fusion protein, HSV requires four glycoproteins, glycoprotein B (gB), glycoprotein D (gD), glycoprotein H (gH), and glycoprotein L (gL), to execute fusion (6, 40, 42). The focus of this study, gH, is expressed as a heterodimer with gL (gH-gL). HSV gH and gL rely on one another for proper folding, posttranslational processing, and transport to the cell and virion surface (5, 23, 35).A sequential model of entry is the prevailing working hypothesis of HSV entry (1-3, 28, 32, 41). Viral attachment is mediated by the binding of glycoprotein C (gC) or gB to cell surface glycosaminoglycans such as heparan sulfate (38). The subsequent fusion between the virion envelope and host cell membrane is thought to result from a series of concerted events. First, gD binds to one of its host cell receptors. These receptors include herpesvirus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor family; nectin-1 and nectin-2, cell adhesion molecules of the Ig superfamily; and heparan sulfate modified by specific 3-O-sulfotransferases (39).It was previously proposed that gD binding a receptor induces a conformational change that allows for interactions between gD, gB, and/or gH-gL (1, 2, 8, 10, 16, 25, 32). It is thought that while gD functions primarily in receptor binding, gB and gH-gL function as the core fusion machinery of HSV.Based on its crystal structure, gB has structural features typical of viral fusion proteins in general and is structurally similar to vesicular stomatitis virus (VSV) glycoprotein G, the fusion protein of VSV (22, 34). In addition to its resemblance to other viral fusogens, gB also binds its own receptor, paired immunoglobulin-like receptor (PILRalpha) (36, 37). Importantly, HSV gB does not successfully execute fusion in the absence of gD or gH-gL (41). Compared to the other required HSV entry glycoproteins, relatively little is known about the specific roles of gH-gL during fusion. The structure of gH-gL is unknown, although in silico analyses and studies of synthetic gH peptides suggested that gH also has fusogenic properties (12, 13, 17-20).gD, a gD receptor, and gH-gL have been shown to be sufficient for inducing hemifusion, the mixing of the proximal leaflets of the viral and host cell bilayers (41). Several lines of research suggest that the subsequent step in fusion is an interaction between gH-gL and gB, with the latter glycoprotein being required for a committed and expanding fusion pore (1-3, 16, 28, 41). However, it is still unclear whether the gB and gH-gL interaction requires that gD first bind a receptor (1, 3), indicating that another viable model of HSV entry may be nonsequential gD-gB-gH-gL complex formation.Several domains important for fusion within HSV gH have been discerned. The only function associated with the N-terminal domain of HSV gH, to date, is gL binding. Residues 377 to 397 within a predicted alpha-helix in the gH ectodomain are required for cell-cell fusion and complementation of a gH-null virus (18). The mutation of a predicted heptad repeat region spanning residues 443 to 471 abrogated cell-cell fusion (17). Insertion mutations within what has been termed the pretransmembrane region of gH have also been shown to abrogate fusion and viral entry (11). The glycine residue at position 812 within the predicted gH transmembrane domain was shown previously to be important for fusion (21). Finally, although the deletion of the final six residues of gH (residues 832 to 838), which are within its short cytoplasmic tail, has no effect on fusion, further deletions were shown to decrease polykaryocyte formation by a syncytial HSV strain (4, 43).We used a transposon-based comprehensive random linker-insertion mutagenesis strategy to generate a library of mutants spanning the entire length of HSV-1 gH, an 838-amino-acid type I membrane protein. A panel of 22 insertion mutants was generated, 15 of which were expressed at near-normal levels on the cell surface. Interestingly, some insertions reduced the rate of cell fusion rather than abrogating cell fusion activity altogether, suggesting that gH may have a role in governing the kinetics of fusion and may be responsible for a rate-limiting first stage in HSV-1 fusion. Additionally, one insertion mutation that completely abrogated cell fusion and viral infectivity is located within the gH cytoplasmic tail, indicating that the short C-terminal tail of gH is critical for cell fusion and entry mediated by HSV-1.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) and the UL20 protein (UL20p) are strictly required for virus-induced cell fusion, and mutations within either the gK or UL20 gene cause extensive cell fusion (syncytium formation). We have shown that gK forms a functional protein complex with UL20p, which is required for all gK and UL20p-associated functions in the HSV-1 life cycle. Recently, we showed that the amino-terminal 82 amino acids (aa) of gK (gKa) were required for the expression of the syncytial phenotype of the mutant virus gBΔ28 lacking the carboxyl-terminal 28 amino acids of gB (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. Kousoulas, J. Virol. 83:12301-12313, 2009). This work suggested that the amino terminus of gK may directly or indirectly interact with gB and/or other viral glycoproteins. Two-way coimmunoprecipitation experiments revealed that UL20p interacted with gB in infected cells. Furthermore, the gKa peptide was coimmunoprecipitated with gB but not gD. Three recombinant baculoviruses were constructed, expressing the amino-terminal 82 aa of gKa together with either the extracellular portion of gB (30 to 748 aa), gD (1 to 340 aa), or gH (1 to 792 aa), respectively. Coimmunoprecipitation experiments revealed that gKa physically interacted with the extracellular portions of gB and gH but not gD. Three additional recombinant baculoviruses expressing gKa and truncated gBs encompassing aa 30 to 154, 30 to 364, and 30 to 500 were constructed. Coimmunoprecipitation experiments showed that gKa physically interacted with all three truncated gBs. Computer-assisted prediction of possible gKa binding sites on gB suggested that gKa may interact predominantly with gB domain I (E. E. Heldwein, H. Lou, F. C. Bender, G. H. Cohen, R. J. Eisenberg, and S. C. Harrison, Science 313:217-220, 2006). These results imply that the gK/UL20p protein complex modulates the fusogenic properties of gB and gH via direct physical interactions.Herpes simplex virus type 1 (HSV-1) can enter into cells via the fusion of its viral envelope with cellular membranes. Also, the virus can spread from infected to uninfected cells by causing virus-induced cell fusion, allowing virions to enter into uninfected cells without being exposed to extracellular spaces. These membrane fusion phenomena are known to be mediated by viral glycoproteins and other viral proteins (reviewed in reference 36). Although wild-type viruses cause a limited amount of virus-induced cell fusion, certain mutations cause extensive virus-induced cell-to-cell fusion (syncytial, or syn, mutations). These syncytial mutations are located predominantly within the UL20 gene (5, 27, 28); the UL24 gene (25, 38); the UL27 gene, encoding glycoprotein gB (7, 15, 18, 32); and the UL53 gene, coding for gK (6, 11, 24, 34, 35, 37).The presence of syncytial mutations within different viral genes, as well as other accumulating evidence, suggests that virus-induced cell fusion is mediated by the concerted action and interactions of the viral glycoproteins gD, gB, and gH/gL as well as gK and the membrane protein UL20p. Specifically, recent studies have shown that gD interacts with both gB and gH/gL (1, 2, 21). However, gB and gH/gL can also interact with each other even in the absence of gD (3). In this membrane fusion model, the binding of gD to its cognate receptors, including nectin-1, herpesvirus entry mediator (HVEM), and other receptors (8, 19, 30, 39-42), is thought to trigger sequential conformational changes in gH/gL and gB causing the fusion of the viral envelope with cellular membranes during virus entry as well as fusion among cellular membranes (22, 23). The transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (31, 43), suggesting that these four viral glycoproteins are necessary and sufficient for membrane fusion. However, this transient fusion system does not accurately depict virus-induced cell fusion. Specifically, viral glycoprotein K (gK) and the UL20 membrane protein (UL20p) have been shown to be strictly required for virus-induced cell fusion (10, 27, 29). Moreover, syncytial mutations within gK (6, 11, 24, 34, 35, 37) or UL20 (5, 27, 28) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than the wild-type virus into susceptible cells (17). In contrast, the transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while the coexpression of wild-type gK with gB, gD, and gH/gL was reported previously to inhibit cell fusion in certain cell lines (4). To date, there is no direct evidence that either gK or UL20p interacts with gB, gD, gH, or gL.The X-ray structure of the ectodomain of HSV-1 gB has been determined and was predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB (23). Single-amino-acid changes within the carboxyl terminus of gB located intracellularly as well as the deletion of the terminal 28 amino acids (aa) of gB cause extensive virus-induced cell fusion, presumably because they alter the extracellular conformation of gB (15, 31, 43). We have previously shown that HSV-1 gK and UL20p functionally and physically interact and that these interactions are absolutely necessary for their coordinate intracellular transport, cell surface expression, and functions in the HSV-1 life cycle (13, 16). In contrast to gB, syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (12), while syncytial mutations of UL20 are located within the amino terminus of UL20p shown to be located intracellularly (27).Recently, we showed that the a peptide composed of the amino-terminal 82 amino acids of gK (gKa) can complement in trans for gB-mediated cell fusion caused by the deletion of the carboxyl-terminal 28 amino acids of gB, suggesting that the gKa peptide interacted with gB or other viral glycoproteins involved in virus-induced cell fusion (10). In this work, we demonstrate that UL20p and the amino terminus of gKa physically interact with gB in infected cells, while the gKa peptide is also capable of binding to the extracellular portion of gH, suggesting that gK/UL20p modulates virus-induced cell fusion via direct interactions with gB and gH.  相似文献   

20.
Herpesviruses can enter host cells using pH-dependent endocytosis pathways in a cell-specific manner. Envelope glycoprotein B (gB) is conserved among all herpesviruses and is a critical component of the complex that mediates membrane fusion and entry. Here we demonstrate that mildly acidic pH triggers specific conformational changes in herpes simplex virus (HSV) gB. The antigenic structure of gB was specifically altered by exposure to low pH both in vitro and during entry into host cells. The oligomeric conformation of gB was altered at a similar pH range. Exposure to acid pH appeared to convert virion gB into a lower-order oligomer. The detected conformational changes were reversible, similar to those in other class III fusion proteins. Exposure of purified, recombinant gB to mildly acidic pH resulted in similar changes in conformation and caused gB to become more hydrophobic, suggesting that low pH directly affects gB. We propose that intracellular low pH induces alterations in gB conformation that, together with additional triggers such as receptor binding, are essential for virion-cell fusion during herpesviral entry by endocytosis.Herpes simplex virus (HSV) is an important human pathogen, causing significant morbidity and mortality worldwide. HSV enters host cells by fusion of the viral envelope with either an endosomal membrane (38) or the plasma membrane (63). The entry pathway taken is thought to be determined by both virus (17, 45) and host cell (4, 17, 35, 39, 45) factors. Based on experiments with lysosomotropic agents, which elevate the normally low pH of endosomes, acidic pH has been implicated in the endocytic entry of HSV into several cell types, including human epithelial cells (37). Low pH has also recently been implicated in cell infection by several other human and veterinary herpesviruses (1, 21, 26, 47). The mechanistic role of endosomal pH in herpesvirus entry into cells is not known.Herpesviruses are a paradigm for membrane fusion mediated by a complex of several glycoproteins. We have proposed that HSV likely encodes machinery to mediate both pH-dependent and pH-independent membrane fusion reactions. Envelope glycoproteins glycoprotein B (gB) and gD and the heterodimer gH-gL are required for both pH-independent and pH-dependent entry pathways (11, 22, 30, 39, 46). Interaction of gD with one of its cognate receptors is an essential trigger for membrane fusion and entry (13, 52), regardless of the cellular pathway. However, engagement of a gD receptor is not sufficient for fusion, and at least one additional unknown trigger involving gB or gH-gL is likely necessary. gB is conserved among all herpesviruses, and in all cases studied to date, it plays roles in viral entry, including receptor binding and membrane fusion. The crystal structure of an ectodomain fragment of HSV type 1 (HSV-1) gB is an elongated, rod-like structure containing hydrophobic internal fusion loops (28). This structure bears striking architectural homology to the low pH, postfusion form of G glycoprotein from vesicular stomatitis virus (VSV-G) (43). Both the gB and G structures have features of class I and class II fusion proteins and are thus designated class III proteins (57).During entry of the majority of virus families, low pH acts directly on glycoproteins to induce membrane fusion (60). In some cases, the low pH trigger is not sufficient, or it plays an indirect role. For example, host cell proteases, such as cathepsins D and L, require intravesicular low pH to cleave Ebola virus and severe acute respiratory syndrome (SARS) glycoproteins to trigger fusion (14, 51).We investigated the role of low pH in the molecular mechanism of herpesviral entry. The results suggest that mildly acidic pH, similar to that found within endosomes, triggers a conformational change in gB. We propose that, together with other cellular cues such as receptor interaction, intracellular low pH can play a direct activating role in HSV membrane fusion and entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号