首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of biofilms requires rapid methods to identify compounds effective against them and to isolate resistance-compromised mutants for identifying genes involved in enhanced biofilm resistance. While rapid screening methods for microtiter plate well (“static”) biofilms are available, there are no methods for such screening of continuous flow biofilms (“flow biofilms”). Since the latter biofilms more closely approximate natural biofilms, development of a high-throughput (HTP) method for screening them is desirable. We describe here a new method using a device comprised of microfluidic channels and a distributed pneumatic pump (BioFlux) that provides fluid flow to 96 individual biofilms. This device allows fine control of continuous or intermittent fluid flow over a broad range of flow rates, and the use of a standard well plate format provides compatibility with plate readers. We show that use of green fluorescent protein (GFP)-expressing bacteria, staining with propidium iodide, and measurement of fluorescence with a plate reader permit rapid and accurate determination of biofilm viability. The biofilm viability measured with the plate reader agreed with that determined using plate counts, as well as with the results of fluorescence microscope image analysis. Using BioFlux and the plate reader, we were able to rapidly screen the effects of several antimicrobials on the viability of Pseudomonas aeruginosa PAO1 flow biofilms.Bacterial biofilms are surface-attached communities that are encased in a polymeric matrix, which exhibit a high degree of resistance to antimicrobial agents and the host immune system (12, 16). This makes them medically important; diseases with a biofilm component are chronic and difficult to eradicate. Examples of such diseases are cystitis (1), endocarditis (31), cystic fibrosis (35), and middle-ear (17) and indwelling medical device-associated (20) infections. Biofilms also play important environmental roles in, for example, wastewater treatment (38), bioremediation (29, 30), biofouling (7), and biocorrosion (2). Better control of biofilms requires elucidation of the molecular basis of their superior resistance (by identifying resistance-compromised mutants) and identification of compounds with antibiofilm activity. While our understanding of these aspects of biofilms has increased (11, 15, 25-27, 36), further work, including development of accurate high-throughput (HTP) methods for screening biofilm viability, is needed.Two major biofilm models are studied in the laboratory, biofilms grown without a continuous flow of fresh medium and biofilms grown with a continuous flow of fresh medium; examples of these two models are microtiter well biofilms and flow cell biofilms, respectively. Methods have been developed for HTP screening of the viability of static biofilms (6, 28, 32, 33), but there are no methods for HTP screening of flow biofilms. The latter biofilms are typically grown in flow cells, which have to be examined individually to determine viability and thus cannot be used for rapid screening. An HTP screening method for flow biofilms is desirable, as these biofilms more closely approximate natural biofilms and can differ from static biofilms evidently due to hydrodynamic influences on cell signaling (22, 34). For example, the ability of rpoS-deficient Escherichia coli (lacking σS) to form flow biofilms is impaired, but its capacity to form biofilms under static conditions is enhanced (18).We describe here a new application of a recently developed device (8-10, 13), the “BioFlux” device consisting of microfluidic channels for biofilm growth. Other microfluidic devices have recently been used for biofilm formation (14, 19, 21, 23), but none of them has been used for HTP screening. The BioFlux device permits rapid measurement of the fluorescence of flow biofilms with a plate reader, which permits initial HTP screening of the viability of such biofilms.  相似文献   

2.
3.
Microbial biotransformations have a major impact on environments contaminated with toxic elements, including arsenic, resulting in an increasing interest in strategies responsible for how bacteria cope with arsenic. In the present work, we investigated the metabolism of this metalloid in the bacterium Ochrobactrum tritici SCII24. This heterotrophic organism contains two different ars operons and is able to oxidize arsenite to arsenate. The presence of arsenite oxidase genes in this organism was evaluated, and sequence analysis revealed structural genes for an As(III) oxidase (aoxAB), a c-type cytochrome (cytC), and molybdopterin biosynthesis (moeA). Two other genes coding for a two-component signal transduction pair (aoxRS) were also identified upstream from the previous gene cluster. The involvement of aox genes in As(III) oxidation was confirmed by functionally expressing them into O. tritici 5bvl1, a non-As(III) oxidizer. Experiments showed that the As(III) oxidation process in O. tritici requires not only the enzyme arsenite oxidase but also the cytochrome c encoded in the operon. The fundamental role of this cytochrome c, reduced in the presence of arsenite in strain SCII24 but not in an O. tritici ΔaoxB mutant, is surprising, since to date this feature has not been found in other organisms. In this strain the presence of an aox system does not seem to confer an additional arsenite resistance capability; however, it might act as part of an As(III)-detoxifying strategy. Such mechanisms may have played a crucial role in the development of early stages of life on Earth and may one day be exploited as part of a potential bioremediation strategy in toxic environments.Arsenic is naturally present in soil, water, and air, and arsenic contamination of drinking water constitutes an important public health problem in numerous countries throughout the world (33). Arsenic occurs in nature in the oxidation states +5 (arsenate), +3 (arsenite), 0 (elemental arsenic), and −3 (arsine). Although arsenic is most notorious as a poison threatening human health, recent studies suggest that arsenic species may have been involved in the ancestral taming of energy and played a crucial role in early stages in the development of life on Earth (reviewed in reference 34). The two soluble arsenic species, arsenate [As(V) as H2AsO4 and HAsO42−] and arsenite [As(III) as H3AsO30 and H2AsO3] are the most common forms and exhibit different toxicities for living organisms. Several studies have documented the role of bacteria on speciation and mobilization of arsenic in the environment (23). Microorganisms are known to influence arsenic geochemistry by their metabolism, i.e., reduction, oxidation, and methylation (for reviews, see references 5, 19, and 22), affecting both the speciation and the toxicity of this element. Arsenate is less toxic than arsenite, but paradoxically, resistance to As(V) requires its reduction to As(III), which is then extruded by an active efflux pump.Another well-documented arsenic transformation is the microbiological oxidation of arsenite to arsenate. This redox reaction is generally carried out by microorganisms either for detoxification or for energy generation to support cellular growth (23). The oxidation of As(III) by heterotrophic microorganisms is generally considered to be a detoxification strategy, since the microbes do not gain energy from this reaction (32). These heterotrophic As-oxidizing organisms include the most-studied Alcaligenes faecalis (3), Herminiimonas arsenoxidans (21), Thermus species (13, 14), Hydrogenophaga sp. strain NT-14 (35), and Agrobacterium tumefaciens (17). In contrast, other organisms have been described as autotrophic As(III) oxidizers able to use the energy gained from the oxidation reaction for growth. Autotrophic As(III) oxidation has been best studied in strain NT-26 (27, 28) but has also been reported for Thiomonas sp. (10), strain MLHE1 (24), and other environmental isolates (7, 16, 25, 26).Of the arsenite-oxidizing bacteria, A. faecalis (3), NT-26 (27), and NT-14 (35) have been studied in detail and their arsenite oxidases purified and characterized. Moreover, a crystal structure of the A. faecalis arsenite oxidase has been elucidated (11). Genes encoding As(III) oxidases (aox) have also been identified and sequenced in several organisms, showing a common genetic organization, aoxA-aoxB, that encodes the small and large subunits, respectively. These aox operons usually contain additional genes, e.g., cytC, which encodes a cytochrome c, and moeA, which encodes an enzyme involved in molybdenum cofactor biosynthesis (32).The genome exploration of the alphaproteobacterium Ochrobactrum tritici revealed that it possesses heretofore-unsuspected mechanisms for coping with arsenic. This work reports the identification of a locus involved in arsenic oxidation in a heterotrophic bacterium previously characterized as carrying two operons involved in arsenic resistance. One operon confers resistance to arsenite and antimonite, while the second one is responsible for resistance to arsenate.  相似文献   

4.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

5.
6.
We assessed the potential of mixed microbial consortia, in the form of granular biofilms, to reduce chromate and remove it from synthetic minimal medium. In batch experiments, acetate-fed granular biofilms incubated aerobically reduced 0.2 mM Cr(VI) from a minimal medium at 0.15 mM day−1 g−1, with reduction of 0.17 mM day−1 g−1 under anaerobic conditions. There was negligible removal of Cr(VI) (i) without granular biofilms, (ii) with lyophilized granular biofilms, and (iii) with granules in the absence of an electron donor. Analyses by X-ray absorption near edge spectroscopy (XANES) of the granular biofilms revealed the conversion of soluble Cr(VI) to Cr(III). Extended X-ray absorption fine-structure (EXAFS) analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III) phosphate, indicating that Cr(III) was immobilized with phosphate on the biomass subsequent to microbial reduction. The sustained reduction of Cr(VI) by granular biofilms was confirmed in fed-batch experiments. Our study demonstrates the promise of granular-biofilm-based systems in treating Cr(VI)-containing effluents and wastewater.Chromium is a common industrial chemical used in tanning leather, plating chrome, and manufacturing steel. The two stable environmental forms are hexavalent chromium [Cr(VI)] and trivalent chromium [Cr(III)] (20). The former is highly soluble and toxic to microorganisms, plants, and animals, entailing mutagenic and carcinogenic effects (6, 22, 33), while the latter is considered to be less soluble and less toxic. Therefore, the reduction of Cr(VI) to Cr(III) constitutes a potential detoxification process that might be achieved chemically or biologically. Microbial reduction of Cr(VI) seemingly is ubiquitous; Cr(VI)-reducing bacteria have been isolated from both Cr(VI)-contaminated and -uncontaminated environments (6, 7, 23, 38, 39). Many archaeal/eubacterial genera, common to different environments, reduce a wide range of metals, including Cr(VI) (6, 16, 21). Some bacterial enzymes generate Cr(V) by mediating one-electron transfer to Cr(VI) (1, 4), while many other chromate reductases convert Cr(VI) to Cr(III) in a single step.Biological treatment of Cr(VI)-contaminated wastewater may be difficult because the metal''s toxicity potentially can kill the bacteria. Accordingly, to protect the cells, cell immobilization techniques were employed (31). Cells in a biofilm exhibit enhanced resistance and tolerance to toxic metals compared with free-living ones (15). Therefore, biofilm-based reduction of Cr(VI) and its subsequent immobilization might be a satisfactory method of bioremediation because (i) the biofilm-bound cells can tolerate higher concentrations of Cr(VI) than planktonic cells, and (ii) they allow easy separation of the treated liquid from the biomass. Ferris et al. (11) described microbial biofilms as natural metal-immobilizing matrices in aqueous environments. Bioflocs, the active biomass of activated sludge-process systems are transformed into dense granular biofilms in sequencing batch reactors (SBRs). As granular biofilms settle extremely well, the treated effluent is separated quickly from the granular biomass by sedimentation (9, 24). Previous work demonstrated that aerobic granular biofilms possess tremendous ability for biosorption, removing zinc, copper, nickel, cadmium, and uranium (19, 26, 31, 32, 40). However, no study has investigated the role of cellular metabolism of aerobically grown granular biofilms in metal removal experiments. Despite vast knowledge about biotransformation by pure cultures, very little is known about reduction and immobilization by mixed bacterial consortia (8, 12, 13, 16, 20, 31, 36). Our research explored, for the first time, the metabolically driven removal of Cr(VI) by microbial granules.The main aim of this study was to investigate Cr(VI) reduction and immobilization by mixed bacterial consortia, viz., aerobically grown granular biofilms. Such biofilm-based systems are promising for developing compact bioreactors for the rapid biodegradation of environmental contaminants (17, 24, 29). Accordingly, we investigated the microbial reduction of Cr(VI) by aerobically grown biofilms in batch and fed-batch experiments and analyzed the oxidation state and association of the chromium immobilized on the biofilms by X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS).  相似文献   

7.
Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.Humic substances can play an important role in the reduction of Fe(III), and possibly other metals, in sedimentary environments (6, 34). Diverse dissimilatory Fe(III)-reducing microorganisms (3, 5, 7, 9, 11, 19-22, 25) can transfer electrons onto the quinone moieties of humic substances (38) or the model compound anthraquinone-2,6-disulfonate (AQDS). Reduced humic substances or AQDS abiotically reduces Fe(III) to Fe(II), regenerating the quinone. Electron shuttling in this manner can greatly increase the rate of electron transfer to insoluble Fe(III) oxides, presumably because soluble quinone-containing molecules are more accessible for microbial reduction than insoluble Fe(III) oxides (19, 22). Thus, catalytic amounts of humic substances have the potential to dramatically influence rates of Fe(III) reduction in soils and sediments and can promote more rapid degradation of organic contaminants coupled to Fe(III) reduction (1, 2, 4, 10, 24).To our knowledge, the mechanisms by which Fe(III)-reducing microorganisms transfer electrons to humic substances have not been investigated previously for any microorganism. However, reduction of AQDS has been studied using Shewanella oneidensis (17, 40). Disruption of the gene for MtrB, an outer membrane protein required for proper localization of outer membrane cytochromes (31), inhibited reduction of AQDS, as did disruption of the gene for the outer membrane c-type cytochrome, MtrC (17). However, in each case inhibition was incomplete, and it was suggested that there was a possibility of some periplasmic reduction (17), which would be consistent with the ability of AQDS to enter the cell (40).The mechanisms for electron transfer to humic substances in Geobacter species are of interest because molecular studies have frequently demonstrated that Geobacter species are the predominant Fe(III)-reducing microorganisms in sedimentary environments in which Fe(III) reduction is an important process (references 20, 32, and 42 and references therein). Geobacter sulfurreducens has routinely been used for investigations of the physiology of Geobacter species because of the availability of its genome sequence (29), a genetic system (8), and a genome-scale metabolic model (26) has made it possible to take a systems biology approach to understanding the growth of this organism in sedimentary environments (23).  相似文献   

8.
9.
Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix. Poly-β(1,6)-N-acetyl-d-glucosamine (PNAG) is a major biofilm matrix component in phylogenetically diverse bacteria. In this study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced in vitro by the gram-negative porcine respiratory pathogen Actinobacillus pleuropneumoniae and the gram-positive device-associated pathogen Staphylococcus epidermidis. The effect of PNAG on bulk fluid flow was determined by measuring the rate of fluid convection through biofilms cultured in centrifugal filter devices. The rate of fluid convection was significantly higher in biofilms cultured in the presence of the PNAG-degrading enzyme dispersin B than in biofilms cultured without the enzyme, indicating that PNAG decreases bulk fluid flow. PNAG also blocked transport of the quaternary ammonium compound cetylpyridinium chloride (CPC) through the biofilms. Binding of CPC to biofilms further impeded fluid convection and blocked transport of the azo dye Allura red. Bioactive CPC was efficiently eluted from biofilms by treatment with 1 M sodium chloride. Taken together, these findings suggest that CPC reacts directly with the PNAG matrix and alters its physical and chemical properties. Our results indicate that PNAG plays an important role in controlling the physiological state of biofilms and may contribute to additional biofilm-associated processes such as biocide resistance.Biofilms are composed of bacterial cells encased in a self-synthesized, extracellular polymeric matrix (7). The main function of the biofilm matrix is to provide a structural framework that holds the cells together in a mass and firmly attaches the bacterial mass to the underlying surface. In addition to having a structural role, the matrix provides biofilm cells with a protected microenvironment containing dissolved nutrients, secreted enzymes, DNA, and phages. The matrix may also contribute to the increased antimicrobial resistance exhibited by biofilm cells, either by providing a diffusion barrier or by directly binding to antimicrobial agents and preventing their penetration into the biofilm (19).Polysaccharides are a major matrix component in most bacterial biofilms (26). Poly-β(1,6)-N-acetyl-d-glucosamine (PNAG) is an extracellular polysaccharide that mediates biofilm cohesion in numerous gram-negative members of the Proteobacteria family, including Escherichia coli, Yersinia pestis, Pseudomonas fluorescens, Bordetella spp., Xenorhabdus nematophila, Aggregatibacter actinomycetemcomitans, and Actinobacillus pleuropneumoniae (4, 8, 15, 22), and in the gram-positive species Staphylococcus aureus and Staphylococcus epidermidis (3, 17). Specific biofilm-related functions ascribed to PNAG include abiotic surface attachment (1), epithelial cell attachment (23, 28), intercellular adhesion (15, 17), and resistance to killing by antibiotics, detergents, antimicrobial peptides, and mammalian phagocytic cells (9, 10, 16, 27, 29).In the present study we investigated the physical and chemical properties of the PNAG matrix in biofilms produced by the porcine respiratory pathogen A. pleuropneumoniae and the device-associated pathogen S. epidermidis. By using a novel centrifugal filter device assay, we obtained evidence that PNAG significantly inhibits fluid convection and solute transport through A. pleuropneumoniae and S. epidermidis biofilms.  相似文献   

10.
11.
Biofilms are considered to be highly resistant to antimicrobial agents. Several mechanisms have been proposed to explain this high resistance of biofilms, including restricted penetration of antimicrobial agents into biofilms, slow growth owing to nutrient limitation, expression of genes involved in the general stress response, and emergence of a biofilm-specific phenotype. However, since combinations of these factors are involved in most biofilm studies, it is still difficult to fully understand the mechanisms of biofilm resistance to antibiotics. In this study, the antibiotic susceptibility of Escherichia coli cells in biofilms was investigated with exclusion of the effects of the restricted penetration of antimicrobial agents into biofilms and the slow growth owing to nutrient limitation. Three different antibiotics, ampicillin (100 μg/ml), kanamycin (25 μg/ml), and ofloxacin (10 μg/ml), were applied directly to cells in the deeper layers of mature biofilms that developed in flow cells after removal of the surface layers of the biofilms. The results of the antibiotic treatment analyses revealed that ofloxacin and kanamycin were effective against biofilm cells, whereas ampicillin did not kill the cells, resulting in regrowth of the biofilm after the ampicillin treatment was discontinued. LIVE/DEAD staining revealed that a small fraction of resistant cells emerged in the deeper layers of the mature biofilms and that these cells were still alive even after 24 h of ampicillin treatment. Furthermore, to determine which genes in the biofilm cells are induced, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. The results showed that significant changes in gene expression occurred during biofilm formation, which were partly induced by rpoS expression. Based on the experimental data, it is likely that the observed resistance of biofilms can be attributed to formation of ampicillin-resistant subpopulations in the deeper layers of mature biofilms but not in young colony biofilms and that the production and resistance of the subpopulations were aided by biofilm-specific phenotypes, like slow growth and induction of rpoS-mediated stress responses.Reduced susceptibility of biofilm bacteria to antimicrobial agents is a crucial problem for treatment of chronic infections (11, 29, 48). It has been estimated that 65% of microbial infections are associated with biofilms (11, 29, 37), and biofilm cells are 100 to 1,000 times more resistant to antimicrobial agents than planktonic bacterial cells (11, 29, 32).The molecular nature of this apparent resistance has not been elucidated well, and a number of mechanisms have been proposed to explain the reduced susceptibility, such as restricted antibiotic penetration (47), decreased growth rates and metabolism (7, 52), quorum sensing and induction of a biofilm-specific phenotype (8, 29, 35, 39, 49), stress response activation (7, 52), and an increase in expression of efflux pumps (14). Biofilm resistance has generally been assumed to be due to the fact that the cells in the deeper layers of thick biofilms, which grow more slowly, have less access to antibiotics and nutrients. However, this is not the only reason in many cases. Familiar mechanisms of antibiotic resistance, such as modifying enzymes and target mutations, do not seem to be responsible for the biofilm resistance. Even sensitive bacteria that do not have a known genetic basis for resistance can exhibit profoundly reduced susceptibility when they form biofilms (48).It was reported previously that changes in gene expression induced a biofilm-specific phenotype (5, 13, 22, 35, 41, 42). Several genes have been proposed to be particularly important for biofilm formation, and the importance of the rpoS gene in Escherichia coli biofilm formation was suggested recently (1, 10, 22, 42). It has been suggested that induction of an rpoS-mediated stress response results in physiological changes that could contribute to antibiotic resistance (29). Although several mechanisms and genes have been proposed to explain biofilm resistance to antibiotics, this resistance is not still fully understood because these mechanisms seem to work together within a biofilm community. In addition, the physiology of biofilm cells is remarkably heterogeneous and varies according to the location of individual cells within biofilms (33, 34, 46).In this study, susceptibility of E. coli cells in biofilms to antibiotics was investigated. The E. coli cells in the deeper layers of mature biofilms were directly treated with three antibiotics with different molecular targets, the β-lactam ampicillin, the aminoglycoside kanamycin, and the fluoroquinolone ofloxacin. The biofilm biomass was removed before antibiotic treatment, and only the cells located in the deeper layers of the mature biofilms were directly exposed to antibiotics; thus, the effects of restricted antibiotic and nutrient penetration, as well as heterogeneous physiological states in biofilms, were reduced. Although ofloxacin and kanamycin effectively killed the biofilm cells, ampicillin could not kill the cells, which led to regrowth of biofilms. However, the cells in young colony biofilms were completely killed by ampicillin. Therefore, to determine which genes are induced in the mature biofilm cells, allowing increased resistance to ampicillin, global gene expression was analyzed at different stages of biofilm formation, the attachment, colony formation, and maturation stages. Based on the experimental data obtained, possible mechanisms of the increased biofilm resistance to ampicillin are discussed below.  相似文献   

12.
13.
The stochastic Ricker population model was used to investigate the generation and maintenance of genetic diversity in a bacterial population grown in a spatially structured environment. In particular, we showed that Escherichia coli undergoes dramatic genetic diversification when grown as a biofilm. Using a novel biofilm entrapment method, we retrieved 64 clones from each of six different depths of a mature biofilm, and after subculturing for ∼30 generations, we measured their growth kinetics in three different media. We fit a stochastic Ricker population growth model to the recorded growth curves. The growth kinetics of clonal lineages descendant from cells sampled at different biofilm depths varied as a function of both the depth in the biofilm and the growth medium used. We concluded that differences in the growth dynamics of clones were heritable and arose during adaptive evolution under local conditions in a spatially heterogeneous environment. We postulate that under nutrient-limited conditions, selective sweeps would be protracted and would be insufficient to purge less-fit variants, a phenomenon that would allow the coexistence of genetically distinct clones. These findings contribute to the current understanding of biofilm ecology and complement current hypotheses for the maintenance and generation of microbial diversity in spatially structured environments.The mechanisms that lead to the genesis and maintenance of diversity in communities have intrigued geneticists and ecologists alike for decades (6, 17, 27, 33, 39, 49). This is particularly challenging for microbial communities, in which ecological and evolutionary processes occur on roughly the same time scale (3, 16, 38) and where the outcome of these processes may be affected by the spatial structure in which these communities grow.Bacterial biofilms are examples of spatially structured communities that have been the subject of intense research in medical and engineering contexts in recent years (3, 8, 20, 48, 56). Previous work has shown that the phenotypic characteristics of bacterial populations in biofilms are distinct from those of their free-swimming counterparts (8). These bacterial assemblages form physically and chemically heterogeneous structures (20) whose complex architecture strongly influences mass transfer (56). This results in the formation of steep gradients of nutrients, waste products, pH, redox potential, and electron acceptors, which results in the creation of distinct and perhaps unique niches on a microscale. This places selective pressure on variants that have enhanced fitness and are well adapted to local conditions. From a theoretical perspective, this would be expected to increase genetic diversity within a population by precluding competitive exclusion, yet this has not previously been demonstrated empirically.The degree of diversification that occurs within populations growing in biofilms is not well understood, nor are the spatial and temporal dynamics of bacterial species succession in biofilms. However, it is known that the physical and chemical heterogeneity of microbial biofilms has profound effects on microbial growth and activity. Most bacterial cells in biofilms are not highly active and grow slowly if at all. For example, active protein synthesis occurs only in the uppermost zone (32 ± 3 μm) of Pseudomonas aeruginosa biofilms (4). Likewise, in Klebsiella pneumoniae biofilms, fast growth occurs near the interface of the biofilm and bulk fluid, and cells inside the biofilm show little growth (55). The near absence of growth in interior regions of biofilms may lead to an increased tempo of diversification, since numerous studies have shown that mutation frequencies are elevated in slowly growing cells (28). If this occurs within a biofilm, then clones might exhibit a high genotypic variability that could have significant practical implications in terms of yielding spontaneous mutants that are resistant to antimicrobial agents.Experimental evolution has contributed greatly to our understanding of the causes and consequences of genetic diversity in populations (reviewed in references 23, 29, and 42). Initially, research focused on characterizing diversity within populations that evolved in spatially homogenous environments (e.g., chemostat and batch systems) (13, 15, 19, 30-32, 45, 47, 50-53). Several studies have highlighted a role for spatial heterogeneity in the emergence and maintenance of genetic diversity (25, 26, 43). Korona and colleagues (25, 26) compared populations that evolved in batch cultures to populations that evolved with a spatial structure and demonstrated that phenotypic diversity was greatest with spatial structure. In other work, Rainey and Travisano (43) showed that populations of Pseudomonas grown in static broth microcosms diversified so that some ecotypes occupied a floating biofilm on the surface of the broth while others occupied the liquid phase or glass surface of the culture. Boles et al. (2, 3) investigated the extent of diversification of Pseudomonas using biofilms that evolved in flow-cell systems. They reported that genetic changes produced by a recA-dependent mechanism affected multiple traits, with some biofilm-derived variants being better able to disseminate while others were better able to form biofilms (3). Further study showed that in some cells, endogenous oxidative stress caused double-stranded DNA breaks that when repaired by recombinatorial DNA repair genes gave rise to mutations (2). These previous studies demonstrate the pivotal role of spatial structure in the generation and maintenance of diversity in evolving bacterial populations.In this study, we extended this work by using novel techniques to characterize diversity in Escherichia coli biofilms that allowed us to recover clones from specific depths within a biofilm. The growth kinetics of clones from six different biofilm depths were measured and modeled using an analysis-of-variance formulation of the stochastic Ricker model of population dynamics with environmental noise (11, 40). Rigorous statistical methods were used to show that after 1 month of cultivation, the extant diversity in E. coli biofilms was extraordinarily high and varied with depth.  相似文献   

14.
Most microbes, including the fungal pathogen Cryptococcus neoformans, can grow as biofilms. Biofilms confer upon microbes a range of characteristics, including an ability to colonize materials such as shunts and catheters and increased resistance to antibiotics. Here, we provide evidence that coating surfaces with a monoclonal antibody to glucuronoxylomannan, the major component of the fungal capsular polysaccharide, immobilizes cryptococcal cells to a surface support and, subsequently, promotes biofilm formation. We used time-lapse microscopy to visualize the growth of cryptococcal biofilms, generating the first movies of fungal biofilm growth. We show that when fungal cells are immobilized using surface-attached specific antibody to the capsule, the initial stages of biofilm formation are significantly faster than those on surfaces with no antibody coating or surfaces coated with unspecific monoclonal antibody. Time-lapse microscopy revealed that biofilm growth was a dynamic process in which cells shuffled position during budding and was accompanied by emergence of planktonic variant cells that left the attached biofilm community. The planktonic variant cells exhibited mobility, presumably by Brownian motion. Our results indicate that microbial immobilization by antibody capture hastens biofilm formation and suggest that antibody coating of medical devices with immunoglobulins must exclude binding to common pathogenic microbes and the possibility that this effect could be exploited in industrial microbiology.Cryptococcus neoformans is a fungal pathogen that is ubiquitous in the environment and enters the body via the inhalation of airborne particles. The C. neoformans cell is surrounded by a layer of polysaccharide that consists predominantly of glucuronoxylomannan (GXM), which forms a protective capsule around the microbe. The capsule has been shown to be essential for virulence in murine models of infection (5-7) and, thus, is considered a key virulence factor. C. neoformans is the causative agent of cryptococcosis, a disease that primarily affects individuals with impaired immune systems, and is a significant problem in AIDS patients (21, 31). The most common manifestation of cryptococcosis is meningoencephalitis.Biofilms are communities of microbes that are attached to surfaces and held together by an extracellular matrix, often consisting predominantly of polysaccharides (8, 10). A great deal is known about bacterial biofilms (3, 9, 24, 30), but fungal biofilm formation is much less studied. Candida albicans is known to synthesize biofilms (11, 28, 29), as is C. neoformans. Biofilm-like structures consisting of innumerable cryptococcal cells encased in a polysaccharide matrix have been reported in human cases of cryptococcosis (32). Biofilm formation confers upon the microbe the capacity for drug resistance, and microbial cells in biofilms are less susceptible to host defense mechanisms (2, 4, 9, 12). In this regard, cells within C. neoformans biofilms are significantly less susceptible to caspofungin and amphotericin B than are planktonic cells (19). The cells within the biofilm are also resistant to the actions of fluconazole and voriconazole and various microbial oxidants and peptides (17, 19).Bacterial and fungal biofilms form readily on prosthetic materials, which poses a tremendous risk of chronic infection (10, 13, 15, 27). C. neoformans biofilms can form on a range of surfaces, including glass, polystyrene, and polyvinyl, and material devices, such as catheters (16). C. neoformans can form biofilms on the ventriculoatrial shunts used to decompress intracerebral pressure in patients with cryptococcal meningoencephalitis (32).The polysaccharide capsule of C. neoformans is essential for biofilm formation (18), and biofilm formation involves the shedding and accumulation of large amounts of GXM into the biofilm extracellular matrix (16). Previously, we reported that antibody to GXM in solution could inhibit biofilm formation through a process that presumably involves interference with polysaccharide shedding (18, 20). However, the effect of antibody-mediated immobilization of C. neoformans cells on cryptococcal biofilm formation has not been explored. In this paper, we report that the monoclonal antibody (MAb) 18B7, which is specific for the capsular polysaccharide GXM, can capture and immobilize C. neoformans to surfaces, a process that promotes biofilm formation. Interestingly, we identified planktonic variant C. neoformans cells that appeared to escape from the biofilm, but whose functions are not known. The results provide new insights on biofilm formation.  相似文献   

15.
Electron transfer from cells to metals and electrodes by the Fe(III)-reducing anaerobe Geobacter sulfurreducens requires proper expression of redox proteins and attachment mechanisms to interface bacteria with surfaces and neighboring cells. We hypothesized that transposon mutagenesis would complement targeted knockout studies in Geobacter spp. and identify novel genes involved in this process. Escherichia coli mating strains and plasmids were used to develop a conjugation protocol and deliver mini-Himar transposons, creating a library of over 8,000 mutants that was anaerobically arrayed and screened for a range of phenotypes, including auxotrophy for amino acids, inability to reduce Fe(III) citrate, and attachment to surfaces. Following protocol validation, mutants with strong phenotypes were further characterized in a three-electrode system to simultaneously quantify attachment, biofilm development, and respiratory parameters, revealing mutants defective in Fe(III) reduction but unaffected in electron transfer to electrodes (such as an insertion in GSU1330, a putative metal export protein) or defective in electrode reduction but demonstrating wild-type biofilm formation (due to an insertion upstream of the NHL domain protein GSU2505). An insertion in a putative ATP-dependent transporter (GSU1501) eliminated electrode colonization but not Fe(III) citrate reduction. A more complex phenotype was demonstrated by a mutant containing an insertion in a transglutaminase domain protein (GSU3361), which suddenly ceased to respire when biofilms reached approximately 50% of the wild-type levels. As most insertions were not in cytochromes but rather in transporters, two-component signaling proteins, and proteins of unknown function, this collection illustrates how biofilm formation and electron transfer are separate but complementary phenotypes, controlled by multiple loci not commonly studied in Geobacter spp.Geobacter sulfurreducens is a member of the metal-reducing Geobacteraceae family and was originally isolated based on its ability to transfer electrons from internal oxidative reactions to extracellular electron acceptors such as insoluble Fe(III) or Mn(IV) oxides (5). G. sulfurreducens is also able to use an electrode as its sole electron acceptor for respiration, a phenotype which has many possible biotechnological applications (28, 29), and serves as a useful tool for direct measurement of electron transfer rates (2, 31). As G. sulfurreducens was the first Geobacteraceae genome sequence available (34) and the only member of this family with a robust genetic system (7), it serves as a model organism for extracellular electron transfer studies.The proteins facilitating electron transfer to insoluble Fe(III) oxides by individual Geobacter cells and how these cells interact in multicellular biofilms are not fully understood. Many genes implicated in Fe(III) and electrode reduction were identified based on proteomic and microarray analysis of cultures grown with fumarate versus Fe(III) citrate as a terminal electron acceptor (9, 15, 35). More recently, similar expression data from Fe(III) oxide and electrode-grown cultures have also become available (8, 12, 16). In most extracellular electron transfer studies, outer membrane proteins (such as c-type cytochromes) have been the focus (4, 23, 27, 32), leading to targeted knockout studies of at least 14 cytochromes to date.To reduce an insoluble electron acceptor, Geobacter spp. must achieve direct contact with the substrate (36). While contact with small Fe(III) oxide particles may be transient, growth on Fe(III)-coated surfaces or electron-accepting electrodes requires biofilm formation (31, 39). For example, when G. sulfurreducens produces an exponentially increasing rate of electron transfer at an electrode, this demonstrates that all newly divided cells remain embedded in the growing, conductive biofilm (2, 31). Thus, in addition to the need for an array of outer membrane cytochromes, there is also a need for control of both cell-cell contact and cell-surface contact.While a genetic system for G. sulfurreducens has been developed, conjugal transfer of a plasmid or a transposon has not been reported (7). The broad-host-range cloning vector pBBR1MCS-2 has previously been electroporated into G. sulfurreducens, but its mobilization capabilities were not utilized (7). Similarly, a number of suicide vectors have been identified for G. sulfurreducens, but none have been used to deliver transposons for mutagenesis. mariner-based transposon mutagenesis systems have been successful in a variety of Bacteria and Archaea, producing random insertions (20, 25, 40, 41, 43, 46, 48, 49). For example, genes involved in Shewanella oneidensis cytochrome maturation were discovered using the modified transposon mini-Himar RB1 (3).In this work, we describe a system for the conjugal transfer of the pBBR1MCS family of plasmids from Escherichia coli to G. sulfurreducens, which allowed transposon mutagenesis based on pMiniHimar RB1. Under strictly anaerobic conditions, a library of insertion mutants was constructed and screened to identify genes putatively involved in attachment and Fe(III) citrate reduction. Approximately 8,000 insertion mutants were isolated, with insertions distributed throughout the G. sulfurreducens chromosome. Subsequent characterization revealed mutants defective in metal reduction but unaffected in all aspects of electrode reduction, as well as mutants able to reduce metals but incapable of electrode reduction. These observations greatly expand the list of Geobacter mutants with defects in respiration or biofilm formation, and this library serves as a resource for further screening of extracellular electron transfer phenotypes.  相似文献   

16.
To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata.Arsenic (As) is an abundant and widespread trace metalloid element present in virtually all environmental media and is well known to be carcinogenic even at low levels (24). Arsenic contaminations in soil and groundwater have been reported in many parts of the world (2, 29, 34). Recently, in parts of Asia, including China, chronic drinking of arsenic-contaminated groundwater has caused endemic arsenicosis, which has become a major threat to public health (36). Soil arsenic contamination also affects the physiology, growth, and grain quality of crops. For example, high arsenic concentrations were found in rice seeds from Chenzhou, Hunan province, which exceeded the maximal permissible limit of 0.5 mg/kg (dry weight) (21). Hence, remediation of arsenic-contaminated soil and water is one of the major challenges in environmental science and public health. Low-cost, efficient, and environmentally friendly remediation technologies to remove arsenic from contaminated soil and water are urgently needed.Phytoremediation, the use of plants to restore contaminated soil, has attracted great attention recently. A pivotal step toward the phytoremediation of arsenic-contaminated soils is the discovery of the arsenic hyperaccumulator Pteris vittata L. (Chinese brake fern), which possesses high arsenic tolerance and produces a large biomass. This plant species holds great promise for the phytoremediation of arsenic-contaminated soils. It was shown previously that the leaflets of P. vittata were able to accumulate about 100-fold of arsenic from soils (22). Plant arsenic uptake depends mainly on the arsenic source and bioavailability (25). P. vittata remediates arsenic contamination mainly by taking up arsenate [As(V)] via phosphate transport systems, whereas arsenite [As(III)] is very slowly taken up by P. vittata, at 1/10 of the rate of that for arsenate in the absence of phosphate (41). However, the uptake mechanisms still remain largely unknown.Microorganisms play a crucial role in arsenic geochemical cycling through microbial transformation processes, including reduction, oxidation, and methylation (2, 11, 31, 33, 40). Although the impacts of microbial metabolisms were previously reported to be associated with arsenic cycling of soil and water (7, 29), little is known about how rhizobacterial communities of P. vittata respond to arsenic. Recently, we found that inoculating arsenic resistance bacteria increased the arsenic accumulation efficiency of P. vittata by 13 to 110% (46). Therefore, rhizobacteria may play an important role during arsenic uptake and accumulation processes by P. vittata. Thus, it is important to elucidate the microbially diverse populations and functional genes associated with arsenic mobility and transport in the P. vittata rhizosphere. However, to fully understand the ecology of such complex rhizosphere-contaminated soils, it is necessary to analyze different microbial populations simultaneously.Our hypothesis is that the arsenic-hyperaccumulating ability of P. vittata is due to the interactions among plants, rhizobacteria, and arsenic. A study of microbial communities present in the plant rhizosphere is important to illustrate the mechanisms of arsenic hyperaccumulation in P. vittata. Thus, the objectives of this research were to understand how microbial metabolic diversities, communities, and functional genes/relative abundances were affected by soil arsenic contamination and the P. vittata rhizosphere environment. To determine the soil microbial metabolic diversity, the Biolog system (Biolog, Carlsbad, CA) was used to analyze the sole-carbon-source-utilizing capabilities of the soil microbial communities. For functional gene analysis, a high-density, sensitive, oligonucleotide-based microarray (GeoChip 3.0) was used. GeoChip-based technologies have revealed the structure, metabolic activity, and dynamics of microbial communities from complex environments, such as soil, sediments, and groundwater (10, 38, 39, 45, 48). Our results provide evidence that changes of microbial community structure, functional gene distribution, and microbial metabolic diversity are associated with the soil arsenic level and the rhizosphere effect of P. vittata and suggest that plant phytoremediation is an interactive process among plants, microorganisms, and soil contaminants.  相似文献   

17.
Coaggregation is hypothesized to enhance freshwater biofilm development. To investigate this hypothesis, the ability of the coaggregating bacterium Sphingomonas natatoria to form single- and dual-species biofilms was studied and compared to that of a naturally occurring spontaneous coaggregation-deficient variant. Attachment assays using metabolically inactive cells were performed using epifluorescence and confocal laser scanning microscopy. Under static and flowing conditions, coaggregating S. natatoria 2.1gfp cells adhered to glass surfaces to form diaphanous single-species biofilms. When glass surfaces were precoated with coaggregation partner Micrococcus luteus 2.13 cells, S. natatoria 2.1gfp cells formed densely packed dual-species biofilms. The addition of 80 mM galactosamine, which reverses coaggregation, mildly reduced adhesion to glass but inhibited the interaction and attachment to glass-surface-attached M. luteus 2.13 cells. As opposed to wild-type coaggregating cells, coaggregation-deficient S. natatoria 2.1COGgfp variant cells were retarded in colonizing glass and did not interact with glass-surface-attached M. luteus 2.13 cells. To determine if coaggregation enhances biofilm growth and expansion, viable coaggregating S. natatoria 2.1gfp cells or the coaggregation-deficient variant S. natatoria 2.1COGgfp cells were coinoculated in flow cells with viable M. luteus 2.13 cells and allowed to grow together for 96 h. Coaggregating S. natatoria 2.1gfp cells outcompeted M. luteus 2.13 cells, and 96-h biofilms were composed predominantly of S. natatoria 2.1gfp cells. Conversely, when coaggregation-deficient S. natatoria 2.1COGgfp cells were coinoculated with M. luteus 2.13 cells, the 96-h biofilm contained few coaggregation-deficient S. natatoria 2.1 cells. Thus, coaggregation promotes biofilm integration by facilitating attachment to partner species and likely contributes to the expansion of coaggregating S. natatoria 2.1 populations in dual-species biofilms through competitive interactions.In nature, most biofilms are not composed of one bacterial species but instead contain multiple species (24). These multispecies communities can be responsible for the fouling of ships (9, 44), the corrosion of liquid-carrying vessels (3, 14), and chronic infections in higher organisms (41, 42, 57). Recent research has demonstrated that in order for multispecies biofilm communities to develop, interbacterial communication is often essential (62) and facilitates the coordination of bacterial activities to promote the formation and to maintain the integrity of multispecies biofilm communities (28, 32, 60). Interspecies communication can be mediated by chemical or physical means. Mechanisms for chemical communication between different species include the secretion and uptake of metabolic by-products (11, 19), the exchange of genetic material (40), and the production and recognition of interspecies signal molecules such as short peptides (36) and autoinducer-2 (10). Mechanisms for interspecies physical communication can involve cell surface structures such as flagella or fimbriae (31, 48) and also include nonspecific adhesion between bacterial species (5) as well as highly specific coaggregations mediated by lectin-saccharide interactions (48).Coaggregation, the highly specific recognition and adhesion of different bacterial species to one another, was first discovered to occur between human oral bacteria in 1970 (23). Since then, research has shown that coaggregation occurs between specific bacterial species in environments other than the human oral cavity (48). Coaggregation interactions have been detected between bacteria isolated from canine dental plaque (21), the crop of chickens (61), the human female urogenital tract (30), the human intestine (34), and wastewater and freshwater biofilms (27, 37, 53). In particular, Buswell et al. (8) first demonstrated that coaggregation occurred between 19 freshwater strains that were isolated from a drinking water biofilm. Further studies by Rickard et al. demonstrated that coaggregation between these 19 strains was mediated by growth-phase-dependent lectin-saccharide interactions (49, 50) and occurred at the interspecies and intraspecies levels for nine different genera (50). From this aquatic biofilm consortium, coaggregation between the gram-negative bacterium Sphingomonas (Blastomonas) natatoria 2.1 and the gram-positive bacterium Micrococcus luteus 2.13 have been studied further. Coaggregation between this pair is mediated by the growth-phase-dependent expression of a lectin-like adhesin(s) on S. natatoria 2.1 and a complementary polysaccharide-containing receptor(s) on the cell surface of M. luteus 2.13 (47, 49). The addition of millimolar concentrations of galactosamine resulted in the dispersion of the coaggregates (47, 49). Coaggregation between this pair also occurs after growth in artificial biofilm constructs composed of poloxamer (47). These findings suggested that coaggregation may contribute to the integration of S. natatoria 2.1 into freshwater biofilms through specific adhesive interactions with M. luteus 2.13. Indeed, while coaggregation is hypothesized to contribute to the integration of species into freshwater biofilms (31, 32, 48), no direct evidence has yet been presented. If coaggregation promotes the integration of species into a freshwater biofilm, it may contribute to the retention of pathogens in drinking water pipelines (7) as well as the maintenance of the species diversity of aquatic biofilms that are exposed to shear stress (52, 53).S. natatoria and M. luteus are commonly isolated from moist environments. M. luteus is environmentally ubiquitous and is found in biofilms of aquatic ecosystems (8, 35), in soil (54), and on human and animal skin (17, 29). Cells of M. luteus are gram positive, coccus shaped, arranged in clusters of tetrads, and nonmotile. S. natatoria is indigenous to freshwater environments (55) and has been isolated from swimming pools, deep-ice boreholes, and drinking water systems (1, 50, 56). Cells are gram negative, are rod shaped, and have the propensity to form rosettes containing 4 to 14 cells (55). Each rosette-forming cell has a polar tuft of fimbriae at its nonreproductive pole by which it attaches to other S. natatoria cells and, possibly, solid surfaces (46, 55). Reproduction occurs by asymmetric division (budding) to produce an ovoid daughter cell, which is highly motile, with a single polar flagellum. These ovoid daughter cells do not coaggregate, and only mature cells within rosettes can attach to other species of bacteria. Previous studies indicated that while coaggregation between S. natatoria 2.1 and M. luteus 2.13 is inhibited by the addition of galactosamine, the propensity of S. natatoria 2.1 to form rosettes was unaffected (46, 49).The aim of this work was to determine if coaggregation enhances the attachment of planktonic S. natatoria 2.1 cells to clean glass surfaces as well as glass surfaces precoated with M. luteus 2.13 cells under static and flowing conditions. This study also aimed to provide insight into whether coaggregation contributes to the expansion of S. natatoria 2.1 populations within dual-species biofilms containing M. luteus 2.13. Epifluorescence microscopy and confocal laser scanning microscopy (CLSM) coupled with three different computer-based analysis programs were used throughout this study. Attachment assays were performed using metabolically inactive planktonic coaggregating or coaggregation-deficient variants of S. natatoria 2.1 that were suspended over or that were flowed across metabolically inactive glass-surface-attached M. luteus 2.13 cells. The potential role of coaggregation in promoting the expansion of S. natatoria 2.1 populations within biofilms containing M. luteus 2.13 was investigated by inoculating flow cells with viable cells and monitoring spatiotemporal development. By achieving these two aims, this work demonstrates that coaggregation contributes to biofilm integration and indicates that there is a possible role for coaggregation interactions in the establishment and expansion of S. natatoria populations in freshwater biofilms.  相似文献   

18.
The majority of Listeria monocytogenes isolates recovered from foods and the environment are strains of serogroup 1/2, especially serotypes 1/2a and 1/2b. However, serotype 4b strains cause the majority of human listeriosis outbreaks. Our investigation of L. monocytogenes biofilms used a simulated food-processing system that consisted of repeated cycles of growth, sanitation treatment, and starvation to determine the competitive fitness of strains of serotypes 1/2a and 4b in pure and mixed-culture biofilms. Selective enumeration of strains of a certain serotype in mixed-culture biofilms on stainless steel coupons was accomplished by using serotype-specific quantitative PCR and propidium monoazide treatment to prevent amplification of extracellular DNA or DNA from dead cells. The results showed that the serotype 1/2a strains tested were generally more efficient at forming biofilms and predominated in the mixed-culture biofilms. The growth and survival of strains of one serotype were not inhibited by strains of the other serotype in mixed-culture biofilms. However, we found that a cocktail of serotype 4b strains survived and grew significantly better in mixed-culture biofilms containing a specific strain of serotype 1/2a (strain SK1387), with final cell densities averaging 0.5 log10 CFU/cm2 higher than without the serotype 1/2a strain. The methodology used in this study contributed to our understanding of how environmental stresses and microbial competition influence the survival and growth of L. monocytogenes in pure and mixed-culture biofilms.A prominent food-borne pathogen, Listeria monocytogenes can cause severe infections in humans, primarily in high-risk populations, though the disease (listeriosis) is relatively rare (11, 30, 43). Outbreaks of listeriosis have resulted from the contamination of a variety of foods by L. monocytogenes, especially meat and dairy products (27). L. monocytogenes is ubiquitous in the environment, able to grow at refrigeration temperature, and tolerant of the low pHs (3 to 4) typical of acidified foods (28, 32, 44). The capacity to produce biofilms confers protection against stresses common in the food-processing environment (13, 33).Biofilms are characterized by dense clusters of bacterial cells embedded in extracellular polymeric substances which are secreted by cells to aid in adhesion to surfaces and to other cells (4, 5). Strains of L. monocytogenes have been known to persist for years in food-processing environments, presumably in biofilms. Of the 13 known serotypes of L. monocytogenes, three (1/2a, 1/2b, and 4b) account for >95% of the isolates from human illness (21). Serotype 1/2a accounts for >50% of the L. monocytogenes isolates recovered from foods and the environment, while most major outbreaks of human listeriosis have been caused by serotype 4b strains (1, 3, 14, 15, 17, 22, 29, 31, 41, 47, 49,). No correlation between L. monocytogenes strain fitness and serotype has been identified (16, 19). Some studies have reported that strains repeatedly isolated from food and environmental samples (defined as persistent strains) had a higher adherence capacity than strains that were sporadically isolated (2, 36), while this phenomenon was not observed by others (7). Serotype 4b strains exhibited a higher capacity for biofilm formation than did serotype 1/2a strains (36), whereas this was not observed by Di Bonaventura and colleagues (6). It has been suggested that serotype 1/2a strains could be more robust than serotype 4b strains in biofilm formation under a variety of environmental conditions. Furthermore, strains of these serotypes differ in terms of the medium that promotes biofilm formation. Biofilm formation by serotype 4b strains was higher in full-strength tryptic soy broth than in diluted medium, whereas the opposite was observed with serotype 1/2a strains, which produced more biofilm in diluted medium (12).There is limited information on microbial competition between strains of different serotypes in biofilms or on how the environmental stresses present in food-processing environments may affect the biofilm formation and survival of L. monocytogenes of different serotypes. In food-processing plants, the environmental stresses encountered by bacteria are more complex and variable than most laboratory systems used for microbial ecology and biofilm studies. A simulated food-processing (SFP) system has been developed to address this issue (38). The SFP system incorporates several stresses that may affect bacteria in biofilms in the food-processing environment, including exposure to sanitizing agents, dehydration, and starvation. When biofilms were subjected to the SFP regimen over a period of several weeks, the cell numbers of L. monocytogenes strains in the biofilms initially were reduced and then increased as the culture adapted (38). The development of resistance to sanitizing agents was specific to the biofilm-associated cells and was not apparent in the detached cells (38). This suggested that extracellular polymeric substances present in the biofilm matrix were responsible for the resistance to sanitizing agents. It was subsequently found that real-time PCR, in combination with propidium monoazide (PMA) treatment of samples prior to DNA isolation, was an effective method for enumerating viable cells in biofilms (37).The objective of this study was to determine if strains of serotype 1/2a or 4b have a selective advantage under stress conditions. We investigated and compared the initial attachment and biofilm formation capabilities of L. monocytogenes strains of these two serotypes and analyzed the survival and growth of bacteria of each serotype in mixed-serotype biofilms in the SFP system by using PMA with quantitative PCR.  相似文献   

19.
20.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号