共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:探讨CD8+CD122+T细胞在脑缺血过程中的作用及其机制。方法:线栓法建立小鼠大脑中动脉栓塞模型(MCAO);激光共聚焦显微镜检测小鼠脑缺血组织中CD8+CD122+T细胞浸润情况;流式细胞仪检测脑缺血组织中CD8+CD122+T细胞/CD3+T细胞的比例及脾和胸腺中CD8+CD122+T细胞数量变化;RT-PCR方法检测CD8+CD122+T细胞对氧糖剥夺(Oxygen-glucose deprivation,OGD)条件下星形胶质细胞表达TNF-α,IL-1β,IFN-γ的影响。结果:各时间点脑缺血组织中均有CD8+CD122+T细胞浸润,且随脑缺血时间延长,缺血侧脑组织中CD8+CD122+T细胞/CD3+T细胞比例逐渐增加,5 d和7 d组差异显著,与非缺血侧相比,P5d0.05,P7d0.05;MCAO小鼠脾及胸腺中CD8+CD122+T细胞呈现先增高后降低的趋势。星形胶质细胞经OGD处理后,与对照组相比,IFN-γ、TNF-α、IL-1β表达显著增高,PIFN-γ0.01、PTNF-α0.001、PIL-1β0.01;CD122-blocked组与CD8+组相比,IFN-γ、TNF-α、IL-1β表达明显增高,PIFN-γ0.05、PTNF-α0.05、PIL-1β0.01;CD8+组与HBSS组相比,IFN-γ表达降低,P0.05;IL-1β表达有降低的趋势。结论:CD8+CD122+T细胞在脑缺血过程中发挥保护性作用,其保护作用通过CD122抑制星形胶质细胞TNF-α,IL-1β,IFN-γ炎症因子表达实现的。 相似文献
2.
Our laboratory reported previously that TNF receptor associated factor 3 (TRAF3) is a positive regulator of TCR signaling and T cell function. In the current study, we present new findings that reveal differential roles for TRAF3 in the regulation of CD4+ and CD8+ T cells. In response to TCR stimulation in vitro, TRAF3 has greater impact in CD4+ T cells than in CD8+ T cells. However, T cell-specific TRAF3 deficient mice (CD4Cre TRAF3fl°x/fl°x; T-TRAF3−/−) have a greater number of CD4+CD44hi effector/memory T cells than littermate control (LMC) mice, possibly due to an inefficient suppressive effect of TRAF3 deficient Foxp3+ regulatory T cells. In contrast, CD8+CD44hiCD62Lhi central memory (Tcm) cells are markedly reduced in T-TRAF3−/− mice in comparison to LMC mice, although CD8+CD44hiCD62Ll°w effector memory T (Tem) cells and naïve T cells (CD8+CD44l°wCD62Lhi) do not show significant differences in number. Importantly, TRAF3-deficient Tcm cells exhibit defective homeostasis due to impaired IL-15 signaling. These results indicate that the involvement of TRAF3 in IL-15 mediated signaling to T cells plays a previously unappreciated and critical role in CD8+ Tcm cell regulation and maintenance. 相似文献
3.
Background
IL-9 is a growth factor for T- and mast-cells that is secreted by human Th2 cells. We recently reported that IL-4+TGF-β directs mouse CD4+CD25−CD62L+ T cells to commit to inflammatory IL-9 producing CD4+ T cells.Methodology/Principal Findings
Here we show that human inducible regulatory T cells (iTregs) also express IL-9. IL-4+TGF-β induced higher levels of IL-9 expression in plate bound-anti-CD3 mAb (pbCD3)/soluble-anti-CD28 mAb (sCD28) activated human resting memory CD4+CD25−CD45RO+ T cells as compared to naïve CD4+CD25−CD45RA+ T cells. In addition, as compared to pbCD3/sCD28 plus TGF-β stimulation, IL-4+TGF-β stimulated memory CD4+CD25−CD45RO+ T cells expressed reduced FOXP3 protein. As analyzed by pre-amplification boosted single-cell real-time PCR, human CD4+IL-9+ T cells expressed GATA3 and RORC, but not IL-10, IL-13, IFNγ or IL-17A/F. Attempts to optimize IL-9 production by pbCD3/sCD28 and IL-4+TGF-β stimulated resting memory CD4+ T cells demonstrated that the addition of IL-1β, IL-12, and IL-21 further enhance IL-9 production.Conclusions/Significance
Taken together these data show both the differences and similarities between mouse and human CD4+IL9+ T cells and reaffirm the powerful influence of inflammatory cytokines to shape the response of activated CD4+ T cells to antigen. 相似文献4.
5.
《Cell reports》2020,30(3):687-698.e6
6.
McMichael AJ Ogg G Wilson J Callan M Hambleton S Appay V Kelleher T Rowland-Jones S 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2000,355(1395):363-367
Cytotoxic T lymphocytes (CTLs) play a central role in the control of persistent HIV infection in humans. The kinetics and general features of the CTL response are similar to those found during other persisting virus infections in humans. During chronic infection there are commonly between 0.1 and 1.0% of all CD8+ T cells in the blood that are specific for immunodominant virus epitopes, as measured by HLA class I peptide tetramers. These figures are greatly in excess of the numbers found by limiting dilution assays; the discrepancy may arise because in the latter assay, CTLs have to divide many times to be detected and many of the HIV-specific CD8+ T cells circulating in infected persons may be incapable of further division. Many tetramer-positive T cells make interferon-gamma, beta-chemokines and perforin, so are probably functional. It is not known how fast these T cells turn over, but in the absence of antigen they decay in number. Impairment of CTL replacement, because CD4+ T helper cells are depleted by HIV infection, may play a major role in the development of AIDS. 相似文献
7.
Borowski AB Boesteanu AC Mueller YM Carafides C Topham DJ Altman JD Jennings SR Katsikis PD 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(10):6494-6503
CD8(+) T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8(+) T cells require CD28 costimulation, whereas memory CD8(+) T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8(+) T cells. In the absence of CD28 costimulation, secondary CD8(+) T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8(+) T cells to expand in the absence of CD28 costimulation is CD4(+) T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8(+) T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8(+) T cell-based vaccines against such pathogens and tumors. 相似文献
8.
9.
Eleonora Li Causi Suraj C. Parikh Lindsey Chudley David M. Layfield Christian H. Ottensmeier Freda K. Stevenson Gianfranco Di Genova 《PloS one》2015,10(9)
CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. 相似文献
10.
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. 相似文献
11.
12.
13.
Jeffrey B. Ulmer Tong-Ming Fu R. Randall Deck Arthur Friedman Liming Guan Corrille DeWitt Xu Liu Su Wang Margaret A. Liu John J. Donnelly Michael J. Caulfield 《Journal of virology》1998,72(7):5648-5653
DNA vaccination is an effective means of eliciting both humoral and cellular immunity, including cytotoxic T lymphocytes (CTL). Using an influenza virus model, we previously demonstrated that injection of DNA encoding influenza virus nucleoprotein (NP) induced major histocompatibility complex class I-restricted CTL and cross-strain protection from lethal virus challenge in mice (J. B. Ulmer et al., Science 259:1745–1749, 1993). In the present study, we have characterized in more detail the cellular immune responses induced by NP DNA, which included robust lymphoproliferation and Th1-type cytokine secretion (high levels of gamma interferon and interleukin-2 [IL-2], with little IL-4 or IL-10) in response to antigen-specific restimulation of splenocytes in vitro. These responses were mediated by CD4+ T cells, as shown by in vitro depletion of T-cell subsets. Taken together, these results indicate that immunization with NP DNA primes both cytolytic CD8+ T cells and cytokine-secreting CD4+ T cells. Further, we demonstrate by adoptive transfer and in vivo depletion of T-cell subsets that both of these types of T cells act as effectors in protective immunity against influenza virus challenge conferred by NP DNA.Cellular immune responses play an important role in protection from disease caused by infectious pathogens, such as viruses and certain bacteria (e.g., Mycobacterium tuberculosis). The specific T cells involved in conferring immunity can include both CD4+ and CD8+ T cells, often through the action of secreted cytokines and cytolytic activity, respectively. Certain types of vaccines, such as subunit proteins and whole or partially purified preparations of inactivated organisms, in general induce CD4+ T-cell responses but not CD8+ cytotoxic T lymphocytes (CTL). In contrast, live attenuated organisms and subunit proteins formulated with certain experimental adjuvants can induce both types of responses. Recently, a different approach consisting of direct immunization with plasmid DNA expression vectors (i.e., DNA vaccines) has shown promise as a viable means of inducing broad-spectrum T-cell responses. The effectiveness of DNA vaccines in animal models is likely due, at least in part, to expression of antigens in situ (35), leading to the induction of CTL (29), antibodies (3, 4, 10, 21, 22, 32), and cytokine-secreting lymphocyte responses (12, 36). During the past 5 years, many reports have been published on the immunogenicity of DNA vaccines encoding various antigens in several animal models, thereby illustrating the applicability of the technology to many pathogens (for a review, see reference 6). However, in only a few instances has the nature of the effector cells responsible for protective immunity been described (7, 16). In the present study, we have analyzed in detail the cellular immune responses induced by influenza virus nucleoprotein (NP) DNA and have established that both CD4+ T cells secreting Th1-type cytokines and CD8+ cytotoxic T cells play important effector roles in heterosubtypic protective immunity against lethal influenza virus challenge in mice. 相似文献
14.
15.
Eddie A. James Rebecca LaFond Ivana Durinovic-Bello William Kwok 《Journal of visualized experiments : JoVE》2009,(25)
Major histocompatibility complex (MHC) class II tetramers allow the direct visualization of antigen specific CD4+ T cells by flow cytometry. This method relies on the highly specific interaction between peptide loaded MHC and the corresponding T-cell receptor. While the affinity of a single MHC/peptide molecule is low, cross-linking MHC/peptide complexes with streptavidin increases the avidity of the interaction, enabling their use as staining reagents. Because of the relatively low frequencies of CD4+ T cells (~1 in 300,000 for a single specificity) this assay utilizes an in vitro amplification step to increase its threshold of detection. Mononuclear cells are purified from peripheral blood by Ficoll underlay. CD4+ cells are then separated by negative selection using biotinylated antibody cocktail and anti-biotin labeled magnetic beads. Using adherent cells from the CD4- cell fraction as antigen presenting cells, CD4+ T cells are expanded in media by adding an antigenic peptide and IL-2. The expanded cells are stained with the corresponding class II tetramer by incubating at 37 C for one hour and subsequently stained using surface antibodies such as anti-CD4, anti-CD3, and anti-CD25. After labeling, the cells can be directly analyzed by flow cytometry. The tetramer positive cells typically form a distinct population among the expanded CD4+ cells. Tetramer positive cells are usually CD25+ and often CD4 high. Because the level of background tetramer staining can vary, positive staining results should always be compared to the staining of the same cells with an irrelevant tetramer. Multiple variations of this basic assay are possible. Tetramer positive cells may be sorted for further phenotypic analysis, inclusion in ELISPOT or proliferation assays, or other secondary assays. Several groups have also demonstrated co-staining using tetramers and either anti-cytokine or anti-FoxP3 antibodies. Open in a separate windowClick here to view.(85M, flv) 相似文献
16.
A Saxena S Desbois N Carrié M Lawand LT Mars RS Liblau 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(6):3140-3149
An increase in IL-17-producing CD8(+) T (Tc17) cells has been reported in the peripheral blood of children with recent onset type 1 diabetes (T1D), but their contribution to disease pathogenesis is still unknown. To directly study the pathogenic potential of β cell-specific Tc17 cells, we used an experimental model of T1D based on the expression of the neo-self Ag hemagglutinin (HA) in the β cells of the pancreas. When transferred alone, the IL-17-producing HA-specific CD8(+) T cells homed to the pancreatic lymph nodes without causing any pancreatic infiltration or tissue destruction. When transferred together with small numbers of diabetogenic HA-specific CD4(+) T cells, a strikingly different phenotype developed. Under these conditions, Tc17 cells sustained disease progression, driving the destruction of β-islet cells, causing hyperglycemia and ultimately death. Disease progression did not correlate with functional or numerical alterations among the HA-specific CD4(+) T cells. Rather, the transferred CD8(+) T cells accumulated in the pancreatic islets and a considerable fraction converted, under the control of IL-12, to an IFN-γ-producing phenotype. Our data indicate that Tc17 cells are not diabetogenic but can potentiate a Th1-mediated disease. Plasticity of the Tc17 lineage is associated with transition to overt disease in this experimental model of T1D. 相似文献
17.
Erin M. Wissink Norah L. Smith Roman Spektor Brian D. Rudd Andrew Grimson 《Genetics》2015,201(3):1017-1030
Immunological memory, which protects organisms from re-infection, is a hallmark of the mammalian adaptive immune system and the underlying principle of vaccination. In early life, however, mice and other mammals are deficient at generating memory CD8+ T cells, which protect organisms from intracellular pathogens. The molecular basis that differentiates adult and neonatal CD8+ T cells is unknown. MicroRNAs (miRNAs) are both developmentally regulated and required for normal adult CD8+ T cell functions. We used next-generation sequencing to identify mouse miRNAs that are differentially regulated in adult and neonatal CD8+ T cells, which may contribute to the impaired development of neonatal memory cells. The miRNA profiles of adult and neonatal cells were surprisingly similar during infection; however, we observed large differences prior to infection. In particular, miR-29 and miR-130 have significant differential expression between adult and neonatal cells before infection. Importantly, using RNA-Seq, we detected reciprocal changes in expression of messenger RNA targets for both miR-29 and miR-130. Moreover, targets that we validated include Eomes and Tbx21, key genes that regulate the formation of memory CD8+ T cells. Notably, age-dependent changes in miR-29 and miR-130 are conserved in human CD8+ T cells, further suggesting that these developmental differences are biologically relevant. Together, these results demonstrate that miR-29 and miR-130 are likely important regulators of memory CD8+ T cell formation and suggest that neonatal cells are committed to a short-lived effector cell fate prior to infection. 相似文献
18.
Chandra Deb Reghann G. LaFrance-Corey William F. Schmalstieg Brian M. Sauer Huan Wang Christopher L. German Anthony J. Windebank Moses Rodriguez Charles L. Howe 《PloS one》2010,5(8)
Background
The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice.Methodology/Principal Findings
To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters.Conclusions/Significance
In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis. 相似文献19.
Hongjuan Lu Jie Chen Xuefeng Nie Cong Liu Weimin Sun 《Cell biochemistry and biophysics》2014,70(3):1705-1711
The survival of T cells at different stages of development is dependent on extrinsic signals. IL-7 is necessary for the development of memory T cells. IL-7 could induce and maintain the differentiation, survival, and proliferation of CD4+ memory T cells, and the roles of IL-2 and IL-15 in the generation of CD4+ memory T cells were still unclear. A CD4+ memory T cells in vitro generated system by adding IL-7. The phenotype of CD4+ memory T cells was identified by FACS. The cells proliferation was analyzed by CFSE staining. The involved signal pathways were analyzed by Western blot. We found that IL-2, not IL-15, could inhibit CD4+ memory T cells generation. Western blot showed that IL-7 up-regulated the P-STAT5A expression and down-regulated Bax expression, IL-2 reduced the effect of IL-7. Besides, IL-2-combined IL-7 up-regulated the P-AKT and Foxo3a expression a little. In conclusion, our data revealed the inhibitory role of IL-2 in CD4+ memory T cells generation and indicated that PI3K/AKT signal pathway was involved. 相似文献
20.
Bertram T. Ober Artur Summerfield Christina Mattlinger Karl-Heinz Wiesmüller Günther Jung Eberhard Pfaff Armin Saalmüller Hanns-Joachim Rziha 《Journal of virology》1998,72(6):4866-4873
Pseudorabies virus (PRV; suid herpesvirus 1) infection causes heavy economic losses in the pig industry. Therefore, vaccination with live attenuated viruses is practiced in many countries. This vaccination was demonstrated to induce extrathymic virus-specific memory CD4+CD8+ T lymphocytes. Due to their major histocompatibility complex (MHC) class II-restricted proliferation, it is generally believed that these T lymphocytes function as memory T-helper cells. To directly prove this hypothesis, 15-amino-acid, overlapping peptides of the viral glycoprotein gC were used for screening in proliferation assays with peripheral blood mononuclear cells of vaccinated d/d haplotype inbred pigs. In these experiments, two naturally processed T-cell epitopes (T1 and T2) which are MHC class II restricted were identified. It was shown that extrathymic CD4+CD8+ T cells are the T-lymphocyte subpopulation that responds to epitope T2. In addition, we were able to show that cytokine secretion can be induced in these T cells through recall with inactivated PRV and demonstrated that activated PRV-primed CD4+CD8+ T cells are able to induce PRV-specific immunoglobulin synthesis by PRV-primed, resting B cells. Taken together, these results demonstrate that the glycoprotein gC takes part in the priming of humoral anti-PRV memory responses. The experiments identified the first T-cell epitopes so far known to induce the generation of virus-specific CD4+CD8+ memory T lymphocytes and showed that CD4+CD8+ T cells are memory T-helper cells. Therefore, this study describes the generation of virus-specific CD4+CD8+ T cells, which is observed during vaccination, as a part of the potent humoral anti-PRV memory response induced by the vaccine.Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, is the causative agent of Aujeszky’s disease. This disease is lethal to young pigs and causes important economic losses (52). Therefore, vaccination of pigs is practiced in many countries.Several humoral immune system effector mechanisms are involved in the protection of pigs from PRV infection. Virus-neutralizing antibodies, antibodies mediating antibody-dependent cell-mediated cytotoxicity, and antibodies mediating complement-mediated lysis of PRV-infected target cells have been demonstrated (22, 23, 53, 54). The main targets of this humoral immune response were shown to be the viral glycoproteins (3, 45), and passive immunization with monoclonal antibodies (MAbs) against gB, gC, and gD protects pigs from a lethal challenge (20, 49).The protection conferred through cell-mediated immunity is poorly understood. An increase in major histocompatibility complex (MHC)-unrestricted cell-mediated cytotoxicity against uninfected and PRV-infected cells has been detected after infection or vaccination of pigs with PRV (16, 53, 54), and specific cellular immune responses to PRV infections could be demonstrated by stimulation of proliferation and lymphokine secretion of porcine PRV-immune lymphocytes (10, 17, 42, 43, 51) as well as by the detection of PRV-specific cytotoxic lymphocytes (21, 56).There are some difficulties in defining more precisely the impact of cell-mediated immune effector mechanisms to protection from PRV-infection and their interplay with the observed humoral immune response. Considerably fewer porcine than human or mouse differentiation markers are available (34). In addition, the immune system of swine differs considerably from that of humans and mice. The pig has a substantial number of CD4−CD8− T lymphocytes in the peripheral blood (4, 6, 12, 36, 39). In young animals, this subpopulation of T lymphocytes comprises up to 60% of the T lymphocytes and contains mainly γδ T lymphocytes. The pig is also the only species so far known to contain a substantial number of resting extrathymic CD4+CD8+ T lymphocytes (28, 36, 39). This T-lymphocyte population shows morphologically the phenotype of mature T lymphocytes (40) and increases with age to up to 60% of peripheral T lymphocytes (29, 35, 39, 55). Further, it was demonstrated that CD4+CD8+ T lymphocytes comprise memory T cells which proliferate upon stimulation with recall antigen (43, 55). Since the observed proliferative response was shown to be MHC class II-restricted, it was speculated that the porcine CD4+CD8+ T-cell subset contains memory T-helper lymphocytes (43). However, the ability of these T lymphocytes to secrete cytokines or to provide help to B cells has so far not been demonstrated.To gain a better understanding of immune effector mechanisms conferring protection from PRV infection, the function of these unusual extrathymic T-lymphocyte subsets has to be elucidated. In the present study, we identified two T-cell epitopes on glycoprotein gC which are primed during vaccination of d/d haplotype inbred pigs (41) against PRV and demonstrated that MHC class II-restricted, peripheral CD4+CD8+ memory T lymphocytes are the responding T lymphocytes. We were further able to show that PRV-specific, extrathymic CD4+CD8+ T lymphocytes are able to secrete cytokines and have the capacity to stimulate the secretion of PRV-specific immunoglobulins (Ig) by PRV-primed B cells. These results demonstrate that porcine CD4+CD8+ T lymphocytes can function as memory T-helper cells and can direct humoral anti-PRV memory responses. 相似文献