首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in β-oxidation convert these substrates to long-chain α,ω-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is ω-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to ω-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized ω-hydroxy fatty acids, ultimately generating the α,ω-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for β-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.  相似文献   

2.
Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces cerevisiae. The functions of the recombinant proteins were analyzed with a variety of alkane and fatty acid substrates using microsome proteins or a whole-cell system. CYP52M1 was found to oxidize C16 to C20 fatty acids preferentially. It converted oleic acid (C18:1) more efficiently than stearic acid (C18:0) and linoleic acid (C18:2) and much more effectively than α-linolenic acid (C18:3). No products were detected when C10 to C12 fatty acids were used as the substrates. Moreover, CYP52M1 hydroxylated fatty acids at their ω- and ω-1 positions. CYP52N1 oxidized C14 to C20 saturated and unsaturated fatty acids and preferentially oxidized palmitic acid, oleic acid, and linoleic acid. It only catalyzed ω-hydroxylation of fatty acids. Minor ω-hydroxylation activity against myristic acid, palmitic acid, palmitoleic acid, and oleic acid was shown for CYP52E3. Furthermore, the three P450s were coassayed with glucosyltransferase UGTA1. UGTA1 glycosylated all hydroxyl fatty acids generated by CYP52E3, CYP52M1, and CYP52N1. The transformation efficiency of fatty acids into glucolipids by CYP52M1/UGTA1 was much higher than those by CYP52N1/UGTA1 and CYP52E3/UGTA1. Taken together, CYP52M1 is demonstrated to be involved in the biosynthesis of sophorolipid, whereas CYP52E3 and CYP52N1 might be involved in alkane metabolism in S. bombicola but downstream of the initial oxidation steps.  相似文献   

3.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J isoforms converting AA to epoxyeicosatrienoic acids (EETs) preferentially epoxidized the ω-3 double bond and thereby produced 17,18-epoxyeicosatetraenoic (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) from EPA and DHA. We found that these ω-3 epoxides are highly active as antiarrhythmic agents, suppressing the Ca2+-induced increased rate of spontaneous beating of neonatal rat cardiomyocytes, at low nanomolar concentrations. CYP4A/4F isoforms ω-hydroxylating AA were less regioselective toward EPA and DHA, catalyzing predominantly ω- and ω minus 1 hydroxylation. Rats given dietary EPA/DHA supplementation exhibited substantial replacement of AA by EPA and DHA in membrane phospholipids in plasma, heart, kidney, liver, lung, and pancreas, with less pronounced changes in the brain. The changes in fatty acids were accompanied by concomitant changes in endogenous CYP metabolite profiles (e.g. altering the EET/EEQ/EDP ratio from 87:0:13 to 27:18:55 in the heart). These results demonstrate that CYP enzymes efficiently convert EPA and DHA to novel epoxy and hydroxy metabolites that could mediate some of the beneficial cardiovascular effects of dietary ω-3 fatty acids.  相似文献   

4.
The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications.  相似文献   

5.
Cytochrome P450SPα (CYP152B1) isolated from Sphingomonas paucimobilis is the first P450 to be classified as a H2O2-dependent P450. P450SPα hydroxylates fatty acids with high α-regioselectivity. Herein we report the crystal structure of P450SPα with palmitic acid as a substrate at a resolution of 1.65 Å. The structure revealed that the Cα of the bound palmitic acid in one of the alternative conformations is 4.5 Å from the heme iron. This conformation explains the highly selective α-hydroxylation of fatty acid observed in P450SPα. Mutations at the active site and the F–G loop of P450SPα did not impair its regioselectivity. The crystal structures of mutants (L78F and F288G) revealed that the location of the bound palmitic acid was essentially the same as that in the WT, although amino acids at the active site were replaced with the corresponding amino acids of cytochrome P450BSβ (CYP152A1), which shows β-regioselectivity. This implies that the high regioselectivity of P450SPα is caused by the orientation of the hydrophobic channel, which is more perpendicular to the heme plane than that of P450BSβ.  相似文献   

6.
Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates > 70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 angstroms for an indazole complex and 2.6 angstroms for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr303 within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe478 aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved 216QXXNN220 residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed omega-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.  相似文献   

7.
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.  相似文献   

8.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.  相似文献   

9.
Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development.  相似文献   

10.
The application of whole cells containing cytochrome P-450BM-3 monooxygenase [EC 1.14.14.1] for the bioconversion of long-chain saturated fatty acids to ω-1, ω-2, and ω-3 hydroxy fatty acids was investigated. We utilized pentadecanoic acid and studied its conversion to a mixture of 12-, 13-, and 14-hydroxypentadecanoic acids by this monooxygenase. For this purpose, Escherichia coli recombinants containing plasmid pCYP102 producing the fatty acid monooxygenase cytochrome P-450BM-3 were used. To overcome inefficient uptake of pentadecanoic acid by intact E. coli cells, we made use of a cloned fatty acid uptake system from Pseudomonas oleovorans which, in contrast to the common FadL fatty acid uptake system of E. coli, does not require coupling by FadD (acyl-coenzyme A synthetase) of the imported fatty acid to coenzyme A. This system from P. oleovorans is encoded by a gene carried by plasmid pGEc47, which has been shown to effect facilitated uptake of oleic acid in E. coli W3110 (M. Nieboer, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1996). By using a double recombinant of E. coli K27, which is a fadD mutant and therefore unable to consume substrates or products via the β-oxidation cycle, a twofold increase in productivity was achieved. Applying cytochrome P-450BM-3 monooxygenase as a biocatalyst in whole cells does not require the exogenous addition of the costly cofactor NADPH. In combination with the coenzyme A-independent fatty acid uptake system from P. oleovorans, cytochrome P-450BM-3 recombinants appear to be useful alternatives to the enzymatic approach for the bioconversion of long-chain fatty acids to subterminal hydroxylated fatty acids.Cytochrome P-450BM-3 monooxygenase (CytP450BM-3) is a soluble NADPH-dependent monooxygenase from Bacillus megaterium ATCC 14581 (13). It is a class II P-450 enzyme that contains flavin adenine dinucleotide, flavin mononucleotide, and a heme moiety (17). Unlike most CytP450 monooxygenases, which consist of a distinct monooxygenase and a reductase, CytP450BM-3 contains these functionalities in a single polypeptide (3, 15, 18).The enzyme hydroxylates a variety of long-chain aliphatic substrates, such as fatty acids, alkanols, and alkylamides at the ω-1, ω-2, and ω-3 positions (4, 17), and oxidizes unsaturated fatty acids to epoxides in vitro (17, 23) with high enantioselectivity. Oxidation of eicosapentenoic acid (C20:5) and arachidonic acid (C20:4) yielded 17(S),18(R)-epoxyeicosatetraenoic acid (94% enantiomeric excess [e.e.]) for the former and a mixture of 18-(R)-hydroxyarachidonic acid (92% e.e.) and 14(S),15(R)-epoxyeicosatrienoic acid at 98% e.e. for the latter substrate (8). Recently, it has been demonstrated that the enzyme also produces α,ω diacids from ω-oxo fatty acids by oxidation of the terminal aldehyde functionality (9). The catalytic constant (kcat) of CytP450BM-3 is among the highest found for P-450 monooxygenases, ranging from 15 s−1 for laureate to 75 s−1 for pentadecanoic acid (11). For comparison, a typical microsomal P-450 monooxygenase from human liver (CYP2J2) had a kcat of 10−3 s−1 for arachidonic acid (32), compared to a kcat of 55 s−1 for CytP450BM-3 for the same substrate (8).This high catalytic efficiency prompted us to investigate the applicability of CytP450BM-3 as a biocatalyst for the subterminal hydroxylation of long-chain fatty acids (LCFAs). Since these subterminal hydroxy LCFAs are chiral molecules, their application in the production of enantiopure synthetic building blocks, especially for pharmaceutical agents, could be envisioned. Further, long-chain hydroxy acids find applications as precursors for polymers or cyclic lactones, which are used as components of fragrances and as antibiotics. Although chemical syntheses have been developed for ω-1 hydroxy fatty acids (from C12 to C18) (26, 28, 29) and for ω-2 and ω-3 hydroxyoctadecanoic acids (2), they require expensive functionalized substrates and are in general complicated, multistep processes (26, 28, 29) which cannot be carried out with unmodified fatty acids as inexpensive starting material. In principle, such inexpensive substrates can be oxidized to hydroxy fatty acids by biocatalysts, either in vitro or in vivo. The latter is preferred, since whole cells actively regenerate the NADPH required for fatty acid oxidation with monooxygenases such as CytP450BM-3. In designing a suitable whole-cell biocatalyst, several additional points had to be considered.First, uptake must be efficient. Second, degradation of substrate or product must be avoided. In fact, biotransformations of fatty acids with whole cells are usually inefficient due to limited uptake of these compounds at neutral pH, and when taken up, they are degraded via β-oxidation. The transport of LCFAs in Escherichia coli is mediated via the fadL and fadD gene products. FadL is the transporter that carries LCFAs across the outer membrane and is absolutely required for LCFA transport (20). FadD, the acyl coenzyme A (CoA) synthetase, is located at the inner side of the cytoplasmic membrane and is required for formation of the acyl coenzyme A thioester, after which the activated fatty acids are channeled into the β-oxidation cycle for fatty acid degradation (21, 22). Thus, we used a FadD mutant, E. coli K27, as a suitable host for the production of subterminal hydroxyalkanoic acids (20). E. coli K27 cannot couple free fatty acids to coenzyme A, thus preventing substrate or product degradation by the host. Such fadD mutants are, however, also impaired in efficient uptake of fatty acids (20). We circumvented this by introducing a fatty acid uptake system from Pseudomonas oleovorans encoded on pGEc47. Finally, we introduced the P-450BM-3 monooxygenase on pCYP102 into the fadD mutant E. coli. The resulting recombinant, E. coli K27(pCYP102, pGEc47), is a promising tailored biocatalyst for the oxidation of saturated LCFAs to ω-1, ω-2, and ω-3 hydroxy fatty acids.  相似文献   

11.
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.  相似文献   

12.
β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism.  相似文献   

13.
Cytochromes P450 comprise a large superfamily and several of their isoforms play a crucial role in metabolism of xenobiotics, including drugs. Although these enzymes demonstrate broad and cross‐substrate specificity, different cytochrome P450 subfamilies exhibit certain selectivity for some types of substrates. Analysis of amino acid residues of the active sites of six cytochrome subfamilies (CYP1А, CYP2А, CYP2С, CYP2D, CYP2E and CYP3А) enables to define subfamily‐specific patterns that consist of four residues. These residues are located on the periphery of the active sites of these cytochromes. We suggest that they can form a primary binding site at the entrance to the active site, defining cytochrome substrate recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A computer model of human cytochrome P450 2E1 (CYP2E1) three-dimensional structure and active site was constructed based on homology with crystallographic coordinates of CYP2C5 and CYP2C9. A high degree of secondary structure homology for human, mouse, rat and rabbit CYP2E1 was demonstrated. The location of heme and the supporting alpha-helices was established. CYP2E1, CYP2C5 and CYP2C9 active sites are distinguished by pocket size and their amino acid residues composition. Key amino acid residues forming the active site channel and substrate-binding cavity are presented. Active site surface area and volume for CYP2E1, CYP2C5 and CYP2C9 were calculated.  相似文献   

15.
The widely conserved preferential accumulation of α-tocopherol (α-TOH) in tissues occurs, in part, from selective postabsorptive catabolism of non-α-TOH forms via the vitamin E-ω-oxidation pathway. We previously showed that global disruption of CYP4F14, the major but not the only mouse TOH-ω-hydroxylase, resulted in hyper-accumulation of γ-TOH in mice fed a soybean oil diet. In the current study, supplementation of Cyp4f14−/− mice with high levels of δ- and γ-TOH exacerbated tissue enrichment of these forms of vitamin E. However, at high dietary levels of TOH, mechanisms other than ω-hydroxylation dominate in resisting diet-induced accumulation of non-α-TOH. These include TOH metabolism via ω-1/ω-2 oxidation and fecal elimination of unmetabolized TOH. The ω-1 and ω-2 fecal metabolites of γ- and α-TOH were observed in human fecal material. Mice lacking all liver microsomal CYP activity due to disruption of cytochrome P450 reductase revealed the presence of extra-hepatic ω-, ω-1, and ω-2 TOH hydroxylase activities. TOH-ω-hydroxylase activity was exhibited by microsomes from mouse and human small intestine; murine activity was entirely due to CYP4F14. These findings shed new light on the role of TOH-ω-hydroxylase activity and other mechanisms in resisting diet-induced accumulation of tissue TOH and further characterize vitamin E metabolism in mice and humans.  相似文献   

16.
The human cytochrome P450 17A1 (CYP17A1) enzyme operates at a key juncture of human steroidogenesis, controlling the levels of mineralocorticoids influencing blood pressure, glucocorticoids involved in immune and stress responses, and androgens and estrogens involved in development and homeostasis of reproductive tissues. Understanding CYP17A1 multifunctional biochemistry is thus integral to treating prostate and breast cancer, subfertility, blood pressure, and other diseases. CYP17A1 structures with all four physiologically relevant steroid substrates suggest answers to four fundamental aspects of CYP17A1 function. First, all substrates bind in a similar overall orientation, rising ∼60° with respect to the heme. Second, both hydroxylase substrates pregnenolone and progesterone hydrogen bond to Asn202 in orientations consistent with production of 17α-hydroxy major metabolites, but functional and structural evidence for an A105L mutation suggests that a minor conformation may yield the minor 16α-hydroxyprogesterone metabolite. Third, substrate specificity of the subsequent 17,20-lyase reaction may be explained by variation in substrate height above the heme. Although 17α-hydroxyprogesterone is only observed farther from the catalytic iron, 17α-hydroxypregnenolone is also observed closer to the heme. In conjunction with spectroscopic evidence, this suggests that only 17α-hydroxypregnenolone approaches and interacts with the proximal oxygen of the catalytic iron-peroxy intermediate, yielding efficient production of dehydroepiandrosterone as the key intermediate in human testosterone and estrogen synthesis. Fourth, differential positioning of 17α-hydroxypregnenolone offers a mechanism whereby allosteric binding of cytochrome b5 might selectively enhance the lyase reaction. In aggregate, these structures provide a structural basis for understanding multiple key reactions at the heart of human steroidogenesis.  相似文献   

17.
Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain “activating” fatty acids induce the protein''s cytoplasmic to nuclear translocation, stimulating PPARβ/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5''s translocation by permitting allosteric communication between the ligand-sensing β2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling.  相似文献   

18.
Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.  相似文献   

19.
Rupasinghe SG  Duan H  Schuler MA 《Proteins》2007,68(1):279-293
Towards defining the function of Arabidopsis thaliana fatty acid hydroxylases, five members of the CYP86A subfamily have been heterologously expressed in baculovirus-infected Sf9 cells and tested for their ability to bind a range of fatty acids including unsubstituted (lauric acid (C12:0) and oleic acid (C18:1)) and oxygenated (9,10-epoxystearic acid and 9,10-dihydroxystearic acid). Comparison between these five P450s at constant P450 content over a range of concentrations for individual fatty acids indicates that binding of different fatty acids to CYP86A2 always results in a higher proportion of high spin state heme than binding titrations conducted with CYP86A1 or CYP86A4. In comparison to these three, CYP86A7 and CYP86A8 produce extremely low proportions of high spin state heme even with the most effectively bound fatty acids. In addition to their previously demonstrated lauric acid hydroxylase activities, all CYP86A proteins are capable of hydroxylating oleic acid but not oxygenated 9,10-epoxystearic acid. Homology models have been built for these five enzymes that metabolize unsubstituted fatty acids and sometimes bind oxygenated fatty acids. Comparison of the substrate binding modes and predicted substrate access channels indicate that all use channel pw2a consistent with the crystal structures and models of other fatty acid-metabolizing P450s in bacteria and mammals. Among these P450s, those that bind internally oxygenated fatty acids contain polar residues in their substrate binding cavity that help stabilize these charged/polar groups within their largely hydrophobic catalytic site.  相似文献   

20.
Crystallographic studies of different membrane cytochrome P450 enzymes have provided examples of distinct structural conformations, suggesting protein flexibility. It has been speculated that conformational selection is an integral component of substrate recognition and access, but direct evidence of such substate interconversion has thus far remained elusive. In the current study, solution NMR revealed multiple and exchanging backbone conformations for certain structural features of the human steroidogenic cytochrome P450 17A1 (CYP17A1). This bifunctional enzyme is responsible for pregnenolone C17 hydroxylation, followed by a 17,20-lyase reaction to produce dehydroepiandrosterone, the key intermediate in human synthesis of androgen and estrogen sex steroids. The distribution of CYP17A1 conformational states was influenced by temperature, binding of these two substrates, and binding of the soluble domain of cytochrome b5 (b5). Notably, titration of b5 to CYP17A1·pregnenolone induced a set of conformational states closely resembling those of CYP17A1·17α-hydroxypregnenolone without b5, providing structural evidence consistent with the reported ability of b5 to selectively enhance 17,20-lyase activity. Solution NMR thus revealed a set of conformations likely to modulate human steroidogenesis by CYP17A1, demonstrating that this approach has the potential to make similar contributions to understanding the functions of other membrane P450 enzymes involved in drug metabolism and disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号