首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
ABSTRACT. Difficulties arising during chemotherapy of Candida albicans necessitate novel chemotherapeutic strategies. Garlic extract and two of its constituents, diallyl disulphide and allyl alcohol, are potentially useful anti-candidal agents. Flow Cytometry has been used to measure the population distributions of apoptotic/necrotic cell death using annexin V-FITC/propidium iodide and oxidative stress dichlorodihydrofluorescein. Candicidal mechanisms may be due to programmed cell death induced by oxidative stress, mediated by the generation of reactive oxygen species or alternatively by the depletion of cellular thiols, which normally act as redox buffer systems for defence. We suggest that mechanisms that these anti-candidal agents have in common is the triggering some of the characteristics of apoptotic cell death.  相似文献   

4.
5.
Candida albicans, the most common facultative human pathogenic fungus is of major medical importance, whereas the closely related species Candida dubliniensis is less virulent and rarely causes life-threatening, systemic infections. Little is known, however, about the reasons for this difference in pathogenicity, and especially on the interactions of C. dubliniensis with the human immune system. Because innate immunity and, in particular, neutrophil granulocytes play a major role in host antifungal defense, we studied the responses of human neutrophils to clinical isolates of both C. albicans and C. dubliniensis. C. dubliniensis was found to support neutrophil migration and fungal cell uptake to a greater extent in comparison with C. albicans, whereas inducing less neutrophil damage and extracellular trap formation. The production of antimicrobial reactive oxygen species, myeloperoxidase, and lactoferrin, as well as the inflammatory chemokine IL-8 by neutrophils was increased when stimulated with C. dubliniensis as compared with C. albicans. However, most of the analyzed macrophage-derived inflammatory and regulatory cytokines and chemokines, such as IL-1α, IL-1β, IL-1ra, TNF-α, IL-10, G-CSF, and GM-CSF, were less induced by C. dubliniensis. Similarly, the amounts of the antifungal immunity-related IL-17A produced by PBMCs was significantly lower when challenged with C. dubliniensis than with C. albicans. These data indicate that C. dubliniensis triggers stronger early neutrophil responses than C. albicans, thus providing insight into the differential virulence of these two closely related fungal species, and suggest that this is, in part, due to their differential capacity to form hyphae.  相似文献   

6.
Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3 (orf19.1861). We show that Rvs167-3 specifically interacts with Rvs162 to form a stable BAR heterodimer able to bind liposomes in vitro. A second, distinct heterodimer is formed by the canonical BAR proteins Rvs161 and Rvs167. Purified Rvs161/Rvs167 complex also binds liposomes, indicating that C. albicans expresses two functional BAR heterodimers. We used live-cell imaging to localize green fluorescent protein (GFP)-tagged Rvs167-3 and Rvs167 and show that both proteins concentrate in small cortical spots. However, while Rvs167 strictly colocalizes with the endocytic marker protein Abp1, we do not observe any colocalization of Rvs167-3 with sites of endocytosis marked by Abp1. Furthermore, the rvs167-3Δ/Δ mutant is not defective in endocytosis and strains lacking Rvs167-3 or its partner Rvs162 do not display increased sensitivity to high salt concentrations or decreased cell wall integrity, phenotypes which have been observed for rvs167Δ/Δ and rvs161Δ/Δ strains and which are linked to endocytosis defects. Taken together, our results indicate different roles for the two BAR heterodimers in C. albicans: the canonical Rvs161/Rvs167 heterodimer functions in endocytosis, whereas the novel Rvs162/Rvs167-3 heterodimer seems not to be involved in this process. Nevertheless, despite their different roles, our phenotypic analysis revealed a genetic interaction between the two BAR heterodimers, suggesting that they may have related but distinct membrane-associated functions.  相似文献   

7.
8.
Mycobacterium massiliense (Mycobacterium abscessus group) is an emerging pathogen causing pulmonary disease and skin and soft tissue infections. We report the genome sequence of the type strain CCUG 48898.  相似文献   

9.
Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.  相似文献   

10.
11.
Candida metapsilosis is a rarely-isolated, opportunistic pathogen that belongs to a clade of pathogenic yeasts known as the C. parapsilosis sensu lato species complex. To gain insight into the recent evolution of C. metapsilosis and the genetic basis of its virulence, we sequenced the genome of 11 clinical isolates from various locations, which we compared to each other and to the available genomes of the two remaining members of the complex: C. orthopsilosis and C. parapsilosis. Unexpectedly, we found compelling genomic evidence that C. metapsilosis is a highly heterozygous hybrid species, with all sequenced clinical strains resulting from the same past hybridization event involving two parental lineages that were approximately 4.5% divergent in sequence. This result indicates that the parental species are non-pathogenic, but that hybridization between them formed a new opportunistic pathogen, C. metapsilosis, that has achieved a worldwide distribution. We show that these hybrids are diploid and we identified strains carrying loci for both alternative mating types, which supports mating as the initial mechanism for hybrid formation. We trace the aftermath of this hybridization at the genomic level, and reconstruct the evolutionary relationships among the different strains. Recombination and introgression -resulting in loss of heterozygosis- between the two subgenomes have been rampant, and includes the partial overwriting of the MTLa mating locus in all strains. Collectively, our results shed light on the recent genomic evolution within the C. parapsilosis sensu lato complex, and argue for a re-definition of species within this clade, with at least five distinct homozygous lineages, some of which having the ability to form hybrids.  相似文献   

12.
Effects of glucose on the susceptibility of antifungal agents were investigated against Candida spp. Increasing the concentration of glucose decreased the activity of antifungal agents; voriconazole was the most affected drugs followed by amphotericin B. No significant change has been observed for anidulafungin. Biophysical interactions between antifungal agents with glucose molecules were investigated using isothermal titration calorimetry, Fourier transform infrared, and 1H NMR. Glucose has a higher affinity to bind with voriconazole by hydrogen bonding and decrease the susceptibility of antifungal agents during chemotherapy. In addition to confirming the results observed in vitro, theoretical docking studies demonstrated that voriconazole presented three important hydrogen bonds and amphotericin B presented two hydrogen bonds that stabilized the glucose. In vivo results also suggest that the physiologically relevant higher glucose level in the bloodstream of diabetes mellitus mice might interact with the available selective agents during antifungal therapy, thus decreasing glucose activity by complex formation. Thus, proper selection of drugs for diabetes mellitus patients is important to control infectious diseases.  相似文献   

13.
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.  相似文献   

14.
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.  相似文献   

15.
Fungal mating: Candida albicans flips a switch to get in the mood   总被引:1,自引:0,他引:1  
Hull CM  Heitman J 《Current biology : CB》2002,12(22):R782-R784
The fungal pathogen Candida albicans can mate under highly controlled conditions. It can also undergo phenotypic switching. A recent discovery joins these disparate processes to reveal that 'opaque' switch variants mate 10(6) times better than 'white' variants.  相似文献   

16.
Polymicrobial bacterial infections are commonly found in cases of Fournier gangrene (FG), although fungal growth may occur occasionally. Solitary fungal organisms causing FG have rarely been reported. The authors describe a case of an elderly man with a history of diabetes who presented with a necrotizing scrotal and perineal soft tissue infection. He underwent emergent surgical debridement with findings of diffuse urethral stricture disease and urinary extravasation requiring suprapubic tube placement. Candida albicans was found to be the single causative organism on culture, and the patient recovered well following antifungal treatment. Fungal infections should be considered as rare causes of necrotizing fasciitis and antifungal treatment considered in at-risk immunodeficient individuals.Key words: Fournier gangrene, Fournier’s Gangrene Severity Index, Candida albicansFournier gangrene (FG) is a rare, rapidly progressive, necrotizing infection of the perineum and genital area that was first described in 1883 by Jean Alfred Fournier in five young male patients.1 The infectious flora causing necrotizing fasciitis are typically polymicrobial, involving aerobic and anaerobic bacteria derived from gastrointestinal, genitourinary, and cutaneous sources.2,3 Certain predisposing conditions increase the risk of developing FG, including diabetes, chronic kidney disease, immunosuppression, local trauma, urethral stricture, or genitourinary infections.46It is essential to diagnose FG early and treat it emergently because the infection can quickly progress, with mortality rates of 7.5% to 50% cited in various series.7,8 Aggressive management involves hemodynamic stabilization, broad spectrum antibiotics to empirically cover all potential organisms, and wide surgical debridement.35 Early surgical debridement with excision of all nonviable tissue is the most important component of treatment. Multiple surgical debridements are often required, as the areas of cutaneous involvement may not indicate the full extent of subcutaneous disease.5Rapid initiation of broad spectrum antibiotic coverage is also necessary to stabilize the presenting patient with FG before and after surgical management. The infection is generally caused by three or more microorganisms, most commonly Escherichia coli, Proteus, Enterococcus, and anaerobes.4 Fungal etiologies of necrotizing infections are rare but have been increasingly reported in the literature.912 Candida species are commonly part of the normal flora in the gastrointestinal and genitourinary tracts of humans but may cause acute disease in the setting of compromised host immunity. This report describes a case of primary C albicans necrotizing fasciitis of the genitalia and reviews the literature regarding fungal FG to determine possible predisposing factors.  相似文献   

17.
18.
Candida albicans is an opportunistic human fungal pathogen that normally resides in the gastrointestinal tract and on the skin as a commensal but can cause life-threatening invasive disease. Salmonella enterica serovar Typhimurium is a gram-negative bacterial pathogen that causes a significant amount of gastrointestinal infection in humans. Both of these organisms are also pathogenic to the nematode Caenorhabditis elegans, causing a persistent gut infection leading to worm death. In the present study, we used a previously developed C. elegans polymicrobial infection model to assess the interactions between S. Typhimurium and C. albicans. We observed that when C. elegans is infected with C. albicans and serovar Typhimurium, C. albicans filamentation is inhibited. The inhibition of C. albicans filamentation by S. Typhimurium in C. elegans appeared to be mediated by a secretary molecule, since filter-sterilized bacterial supernatant was able to inhibit C. albicans filamentation. In vitro coculture assays under planktonic conditions showed that S. Typhimurium reduces the viability of C. albicans, with greater effects seen at 37°C than at 30°C. Interestingly, S. Typhimurium reduces the viability of both yeast and filamentous forms of C. albicans, but the killing appeared more rapid for the filamentous cells. The antagonistic interaction was also observed in a C. albicans biofilm environment. This study describes the interaction between two diverse human pathogens that reside within the gastrointestinal tract and shows that the prokaryote, S. Typhimurium, reduces the viability of the eukaryote, C. albicans. Identifying the molecular mechanisms of this interaction may provide important insights into microbial pathogenesis.Candida albicans, the most common human fungal pathogen, is a prototypical opportunistic organism that lives harmlessly in the human gastrointestinal tract but has the ability to cause life-threatening invasive disease. Bloodstream infection with C. albicans remains the most lethal form (10), with translocation of the gastrointestinal mucosa being an important pathogenic mechanism, especially in hemato-oncology patients and those who have undergone abdominal surgery. A key virulence determinant of C. albicans is its ability to transition from yeast to a filamentous form (16, 17, 19, 22). This morphogenesis appears important for tissue adherence and invasion (22). Furthermore, C. albicans has the ability to form complex biofilms on medical devices (13) and on human mucosal surfaces, such as the gastrointestinal and bronchial mucosa. C. albicans biofilm formation has immense clinical and economic consequences (13).Recently the interactions between this important fungal pathogen and bacteria were described (11, 12, 18). These studies focus on the interaction between C. albicans and nonfermenting, gram-negative bacteria, such as Pseudomonas aeruginosa and Acinetobacter baumannii, whose interactions are likely found in the clinical environment, especially in the respiratory tracts of critically ill patients and on wounds of patients with burn injuries (7, 20). Of interest, these bacteria show antagonistic properties toward C. albicans, with a predilection toward reducing the viability of C. albicans filaments. In order to study these prokaryote-eukaryote interactions, our laboratory developed a polymicrobial infection model system using Caenorhabditis elegans as a substitute host (18). Previously, we showed that C. albicans causes a persistent lethal infection of the C. elegans intestinal tract (6). This leads to overwhelming C. albicans intestinal proliferation with subsequent filamentation through the worm cuticle (6). Given these characteristics, we decided to use this model to study the interaction of C. albicans with another intestinal pathogen, Salmonella enterica serovar Typhimurium.S. Typhimurium is a gram-negative organism that belongs to the Enterobacteriaceae family. It is a gastrointestinal tract pathogen of humans, being responsible for approximately 2 million to 4 million cases of enterocolitis each year in the United States (4, 8, 21, 23). During infection, S. Typhimurium competes with normal intestinal flora (23). Its virulence pathways are well described, and it has been shown to cause a persistent and lethal gut infection of the nematode C. elegans, similar to infection seen with C. albicans (1, 14). Given this and the fact that C. albicans is a common inhabitant of the human gastrointestinal tract, we used the C. elegans polymicrobial infection model (18) to study the interactions between S. Typhimurium and C. albicans. Understanding the interactions between these diverse organisms within the complex milieu of an intestinal tract may provide important pathogenic and therapeutic insights.  相似文献   

19.
Mycopathologia - Candida vulturna is a new member of the Candida haemulonii species complex that recently received much attention as it includes the emerging multidrug-resistant pathogen Candida...  相似文献   

20.
Interaction of Candida albicans with Human Leukocytes and Serum   总被引:76,自引:0,他引:76       下载免费PDF全文
A quantitative assay of candidacidal activity based on differential staining of non-viable Candida albicans by methylene blue was developed and applied to studies of leukocytes from normal individuals and patients with fungal and other infections. Serum factors were necessary for optimal phagocytosis of C. albicans but lacked direct candidacidal activity. Normal human neutrophils (38 studies) killed 29.0 +/- 7.4% of ingested C. albicans in 1 hr. Eosinophils and monocytes killed a smaller percentage. Neutrophil candidacidal activity did not require protein or ribonucleic acid synthesis by the leukocyte but was inhibited by anaerobic conditions, potassium cyanide, and colchicine. Leukocytes of a patient with hereditary myeloperoxidase deficiency and of three children with chronic granulomatous disease phagocytized C. albicans normally, yet failed to kill them. Our data suggest that the neutrophil can play an important role in resistance to Candida infection and that the lysosomal enzyme myeloperoxidase and its oxidant substrate hydrogen peroxide are the major participants in neutrophil candidacidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号