首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have demonstrated that PH domains specific for PI(3,4,5)P3 accumulate at the leading edge of a number of migrating cells and that PI3Ks and PTEN associate with the membrane at the front and back, respectively, of chemotaxing Dictyostelium discoideum cells. However, the dependence of chemoattractant induced changes in PI(3,4,5)P3 on PI3K and PTEN activities have not been defined. We find that bulk PI(3,4,5)P3 levels increase transiently upon chemoattractant stimulation, and the changes are greater and more prolonged in pten- cells. PI3K activation increases within 5 s of chemoattractant addition and then declines to a low level of activity identically in wild-type and pten- cells. Reconstitution of the PI3K activation profile can be achieved by mixing membranes from stimulated pi3k1-/pi3k2- cells with cytosolic PI3Ks from unstimulated cells. These studies show that significant control of chemotaxis occurs upstream of the PI3Ks and that regulation of the PI3Ks and PTEN cooperate to shape the temporal and spatial localization of PI(3,4,5)P3.  相似文献   

2.
3.
4.
5.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na(+) channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P(3) and PI(4,5)P(2) to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in beta- and gamma- but not alpha-ENaC as necessary for PI(3,4,5)P(2) but not PI(4,5)P(2) modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in beta- and gamma-ENaC are critical to PI(3,4,5)P(3) augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of beta- and gamma-ENaC were identified as being critical to down-regulation of ENaC activity and P(o) in response to depletion of membrane PI(4,5)P(2). These regions of the channel played no identifiable role in a PI(3,4,5)P(3) response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P(2) to increase open probability. We conclude that beta and gamma subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P(3) and PI(4,5)P(2). This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.  相似文献   

6.
AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, with the result that a deficit in AMPK activity markedly impairs exercise tolerance. Compared with wild-type littermates at the same relative exercise capacity, vascular glucose delivery and skeletal muscle glucose uptake were impaired; skeletal muscle ATP degradation was accelerated, and arterial lactate concentrations were increased in mice expressing a kinase-dead AMPKα2 subunit (α2-KD) in skeletal muscle. Nitric-oxide synthase (NOS) activity was significantly impaired at rest and in response to exercise in α2-KD mice; expression of neuronal NOS (NOSμ) was also reduced. Moreover, complex I and IV activities of the electron transport chain were impaired 32 ± 8 and 50 ± 7%, respectively, in skeletal muscle of α2-KD mice (p < 0.05 versus wild type), indicative of impaired mitochondrial function. Thus, AMPK regulates neuronal NOSμ expression, NOS activity, and mitochondrial function in skeletal muscle. In addition, these results clarify the role of AMPK in the control of muscle glucose uptake during exercise. Collectively, these findings demonstrate that AMPK is central to substrate metabolism in vivo, which has important implications for exercise tolerance in health and certain disease states characterized by impaired AMPK activation in skeletal muscle.The ubiquitously expressed serine/threonine AMP-activated protein kinase (AMPK)2 is an αβγ heterotrimer postulated to play a key role in the response to energetic stress (1, 2), because of its sensitivity to increased cellular AMP levels (3). Pharmacological activation of AMPK (primarily via the AMP analogue ZMP) increases catabolic processes such as GLUT4 translocation (4, 5), glucose uptake (6, 7), long chain fatty acid (LCFA) uptake (8), and substrate oxidation (6). Concomitantly, pharmacological activation of AMPK inhibits anabolic processes, and in skeletal muscle genetic reduction of the catalytic AMPKα2 subunit eliminates these pharmacological effects (912). Thus, AMPK has been proposed to act as a metabolic master switch (2, 13, 14). Physiologically, exercise at intensities sufficient to increase free cytosolic AMP (AMPfree) levels is a potent stimulus of AMPK, preferentially activating AMPKα2 in skeletal muscle (1517). The metabolic profile of skeletal muscle during moderate to high intensity exercise is remarkably similar to skeletal muscle in which AMPK has been pharmacologically activated (i.e. increases in catabolic processes). This is consistent with the hypothesis that AMPK activation is required for the metabolic response to increased cellular stress. Given this, it is surprising that the direct role(s) of skeletal muscle AMPK during exercise under physiological in vivo conditions is unknown.A number of studies have tried to attribute causality to the AMPK and metabolic responses to exercise using transgenic models. In mouse models in which AMPKα2 protein expression and/or activity has been impaired, contractions performed in isolated skeletal muscle in vitro, ex vivo, or in situ have demonstrated that skeletal muscle glucose uptake (MGU) is normal (9, 10), partially impaired (11, 18), or ablated (19). Furthermore, ex vivo skeletal muscle LCFA uptake and oxidation in response to contraction appears to be AMPK-independent (20, 21). A key limitation of these studies is that the experimental models were not physiological. Under in vivo conditions, mice expressing a kinase-dead (18) or inactive (22) AMPKα2 subunit in cardiac and skeletal muscle have impaired voluntary and maximal physical activity, respectively, indicative of a physiological role for AMPK during exercise. In this context, obese non-diabetic and diabetic individuals have impaired skeletal muscle AMPK activation during moderate intensity exercise (23) as well as during the post-exercise period (24), yet the contribution of this impairment to the disease state is unclear. Thus, in vivo studies are essential to define the role of AMPK in skeletal muscle during exercise.Physical exercise of a moderate intensity is an effective adjunct treatment for chronic metabolic diseases such as obesity and type 2 diabetes (25). Given the importance of elucidating the molecular mechanism(s) regulating skeletal muscle substrate metabolism during exercise and the putative role of AMPK as a critical mediator in this process, we tested the hypothesis that AMPKα2 is functionally linked to substrate metabolism in vivo.  相似文献   

7.
CD248 (Endosialin) is a type 1 membrane protein involved in developmental and pathological angiogenesis through its expression on pericytes and regulation of PDGFRβ signalling. Here we explore the function of CD248 in skeletal muscle angiogenesis. Two distinct forms of capillary growth (splitting and sprouting) can be induced separately by increasing microcirculatory shear stress (chronic vasodilator treatment) or by inducing functional overload (extirpation of a synergistic muscle). We show that CD248 is present on pericytes in muscle and that CD248-/- mice have a specific defect in capillary sprouting. In contrast, splitting angiogenesis is independent of CD248 expression. Endothelial cells respond to pro-sprouting angiogenic stimulus by up-regulating gene expression for HIF1α, angiopoietin 2 and its receptor TEK, PDGF-B and its receptor PDGFRβ; this response did not occur following a pro-splitting angiogenic stimulus. In wildtype mice, defective sprouting angiogenesis could be mimicked by blocking PDGFRβ signalling using the tyrosine kinase inhibitor Imatinib mesylate. We conclude that CD248 is required for PDGFRβ-dependant capillary sprouting but not splitting angiogenesis, and identify a new role for CD248 expressed on pericytes in the early stages of physiological angiogenesis during muscle remodelling.  相似文献   

8.
Focal adhesions are an elaborate network of interconnecting proteins linking actin stress fibers to the extracellular matrix substrate. Modulation of the focal adhesion plaque provides a mechanism for the regulation of cellular adhesive strength. Using interference reflection microscopy, we found that activation of phosphoinositide 3-kinase (PI 3-kinase) by PDGF induces the dissipation of focal adhesions. Loss of this close apposition between the cell membrane and the extracellular matrix coincided with a redistribution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fraction. In contrast, talin and paxillin remained localized to focal adhesions, suggesting that activation of PI 3-kinase induced a restructuring of the plaque rather than complete dispersion. Furthermore, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns (3,4,5)-P(3)), a lipid product of PI 3-kinase, was sufficient to induce restructuring of the focal adhesion plaque. We also found that PtdIns (3,4,5)-P(3) binds to alpha-actinin in PDGF-treated cells. Further evidence demonstrated that activation of PI 3-kinase by PDGF induced a decrease in the association of alpha-actinin with the integrin beta subunit, and that PtdIns (3,4,5)-P(3) could disrupt this interaction in vitro. Modification of focal adhesion structure by PI 3-kinase and its lipid product, PtdIns (3,4,5)-P(3), has important implications for the regulation of cellular adhesive strength and motility.  相似文献   

9.
Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a second messenger produced in response to agonist stimulation. Traditionally, visualization of phosphoinositide polyphosphates (PtdInsP(n)) in living cells is accomplished using chimeric green fluorescent protein (GFP)-pleckstrin homology (PH) domain proteins, while PtdInsP(n) quantitation is accomplished by extraction and separation of radiolabeled cellular PtdInsP(n)s. Here we describe preparation of a covalent protein-PtdIns(3,4,5)P(3) immunogen, characterization of binding selectivity of an anti-PtdIns(3,4,5)P(3) IgM, and immunodetection of PtdIns(3,4,5)P(3) in stimulated mammalian cells. This antibody has greater than three orders of magnitude selectivity for binding PtdIns(3,4,5)P(3) relative to its precursor, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and is therefore optimal for studies of cell function. The immunodetection in platelet-derived growth factor (PDGF)-stimulated NIH 3T3 cells was benchmarked against HPLC analysis of [3H]-myo-inositol-labeled cellular PtdInsP(n)s. In addition, the changes in subcellular amounts and localizations of both PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) in stimulated NIH 3T3 fibroblasts and human neutrophils were observed by immunofluorescence. In insulin- or PDGF-stimulated fibroblasts, PtdIns(3,4,5)P(3) levels increased in the cytoplasm, peaking at 10 min. In contrast, increases in the PtdIns(4,5)P(2) levels were detected in nuclei, corresponding to the production of new substrate following depletion by phosphoinositide (PI) 3-kinase.  相似文献   

10.
The retractile type IV pilus participates in a number of fundamental bacterial processes, including motility, DNA transformation, fruiting body formation and attachment to host cells. Retraction of the N. gonorrhoeae type IV pilus requires a functional pilT. Retraction generates substantial force on its substrate (> 100 pN per retraction event), and it has been speculated that epithelial cells sense and respond to these forces during infection. We provide evidence that piliated, Opa non-expressing Neisseria gonorrhoeae activates the stress-responsive PI-3 kinase/Akt (PKB) pathway in human epithelial cells, and activation is enhanced by a functional pilT. PI-3 kinase inhibitors wortmannin and LY294002 reduce cell entry by 81% and 50%, respectively, illustrating the importance of this cascade in bacterial invasion. PI-3 kinase and its direct downstream effectors [PI(3,4,5)P3] and Akt are concentrated in the cell cortex beneath adherent bacteria, particularly at the periphery of the bacterial microcolonies. Furthermore, [PI(3,4,5)P3] is translocated to the outer leaflet of the plasma membrane. Finally, we show that [PI(3,4,5)P3] stimulates microcolony formation and upregulates pilT expression in vitro. We conclude that N. gonorrhoeae activation of PI-3 kinase triggers the host cell to produce a lipid second messenger that influences bacterial behaviour.  相似文献   

11.
Arap3 is a phosphoinositide (PI) 3 kinase effector that serves as a GTPase activating protein (GAP) for both Arf and Rho G-proteins. The protein has multiple pleckstrin homology (PH) domains that bind preferentially phosphatidyl-inositol-3,4,5-trisphosphate (PI(3,4,5,)P3) to induce translocation of Arap3 to the plasma membrane upon PI3K activation. Arap3 also contains a Ras association (RA) domain that interacts with the small G-protein Rap1 and a sterile alpha motif (SAM) domain of unknown function. In a yeast two-hybrid screen for new interaction partners of Arap3, we identified the PI 5'-phosphatase SHIP2 as an interaction partner of Arap3. The interaction between Arap3 and SHIP2 was observed with endogenous proteins and shown to be mediated by the SAM domain of Arap3 and SHIP2. In vitro, these two domains show specificity for a heterodimeric interaction. Since it was shown previously that Arap3 has a higher affinity for PI(3,4,5,)P3 than for PI(3,4)P2, we propose that the SAM domain of Arap3 can function to recruit a negative regulator of PI3K signaling into the effector complex.  相似文献   

12.
The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.  相似文献   

13.
14.
15.
Traditionally, GRP78 has been regarded as an endoplasmic reticulum (ER) lumenal protein due to its carboxyl KDEL retention motif. Recently, a subfraction of GRP78 is found to localize to the surface of specific cell types, serving as co-receptors and regulating signaling. However, the physiological relevance of cell surface GRP78 (sGRP78) expression in cancer and its functional interactions at the cell surface are just emerging. In this report, we combined biochemical, imaging and mutational approaches to address these issues. For detection of sGRP78, we utilized a mouse monoclonal antibody highly potent and specific for GRP78 or epitope-tagged GRP78, coupled with imaging and biochemical techniques that allowed detection of sGRP78 but not intracellular GRP78. Our studies revealed that breast and prostate cancer cells resistant to hormonal therapy actively promote GRP78 to the cell surface, which can be further elevated by a variety of ER stress-inducing conditions. We showed that sGRP78 forms complex with PI3K, and overexpression of sGRP78 promotes PIP3 formation, indicative of PI3K activation. We further discovered that an insertion mutant of GRP78 at its N-terminus domain, while retaining stable expression and the ability to translocate to the cell surface as the wild-type protein, exhibited reduced complex formation with p85 and production of PIP3. Thus, our studies provide a mechanistic explanation for the regulation of the PI3K/AKT signaling by sGRP78. Our findings suggest that targeting sGRP78 may suppress therapeutic resistance in cancer cells and offer a novel strategy to suppress PI3K activity.  相似文献   

16.
The role of PI(3,4,5)P(3) in Dictyostelium signal transduction and chemotaxis was investigated using the PI3-kinase inhibitor LY294002 and pi3k-null cells. The increase of PI(3,4,5)P(3) levels after stimulation with the chemoattractant cAMP was blocked >95% by 60 microM LY294002 with half-maximal effect at 5 microM. This correlated well with the inhibition of the membrane translocation of the PH-domain protein, PHcracGFP. LY294002 did not reduce cAMP-mediated cGMP production, but significantly reduced the cAMP response up to 75% in wild type and completely in pi3k-null cells. LY294002-treated cells were round, not elongated as control cells. Interestingly, cAMP induced a time and dose-dependent recovery of cell elongation. These elongated LY294002-treated wild-type and pi3k-null cells exhibited chemotactic orientation toward cAMP that is statistically identical to chemotactic orientation of control cells. In control cells, PHcrac-GFP and F-actin colocalize upon cAMP stimulation. However, inhibition of PI3-kinases does not affect the first phase of the actin polymerization at a wide range of chemoattractant concentrations. Our data show that severe inhibition of cAMP-mediated PI(3,4,5)P(3) accumulation leads to inhibition of cAMP relay, cell elongation and cell aggregation, but has no detectable effect on chemotactic orientation, provided that cAMP had sufficient time to induce cell elongation.  相似文献   

17.
The PI3K-PKB pathway is an important and widely studied pathway in cell signaling. The enzyme activity of PI3K produces D-3 phosphoinositides, including the lipid second messengers PI(3,4,5)P3 and PI(3,4)P2. PI(3,4,5)P3 has been deemed to be the most important second messenger for triggering PKB phosphorylation. PKB has two regulatory phosphorylation sites, Thr308 and Ser473, both of which contribute to its full activity. The direct relationship between PI3K lipid products and PKB phosphorylation is still not entirely clear. Our previous study showed that PI(3,4)P2 has a specific role in contributing to PKB phosphorylation on Ser473 sites in mast cells. In this study, we used two strategies to further elucidate this question in a well-established B cell system. First, by SHIP overexpression, we examined PKB activation under conditions where PI(3,4,5)P3 accumulation is largely suppressed. Second, we used dose response of different forms of B-cell receptor ligands to manipulate the relative levels of PI(3,4,5)P3 and PI(3,4)P2. Our results demonstrate a close relationship between PI(3,4,5)P3 levels and Thr308 phosphorylation levels, and PI(3,4)P2 levels and Ser473 phosphorylation levels, respectively. Furthermore, overall PKB activity, primarily consisting of cytosolic enzyme, was dependent upon levels of PI(3,4)P2, while only membrane-associated PKB activity was dependent upon PI(3,4,5)P3 levels. We conclude that PI(3,4,5)P3 and PI(3,4)P2 have distinct roles in determining PKB phosphorylation and activity. Thus, when investigating PI3K-PKB pathways, the importance of both lipids must be considered.  相似文献   

18.
19.
Neutrophils exposed to chemoattractants polarize and accumulate polymerized actin at the leading edge. In neutrophil-like HL-60 cells, this asymmetry depends on a positive feedback loop in which accumulation of a membrane lipid, phosphatidylinositol (PI) 3,4,5-trisphosphate (PI[3,4,5]P3), leads to activation of Rac and/or Cdc42, and vice versa. We now report that Rac and Cdc42 play distinct roles in regulating this asymmetry. In the absence of chemoattractant, expression of constitutively active Rac stimulates accumulation at the plasma membrane of actin polymers and of GFP-tagged fluorescent probes for PI(3,4,5)P3 (the PH domain of Akt) and activated Rac (the p21-binding domain of p21-activated kinase). Dominant negative Rac inhibits chemoattractant-stimulated accumulation of actin polymers and membrane translocation of both fluorescent probes and attainment of morphologic polarity. Expression of constitutively active Cdc42 or of two different protein inhibitors of Cdc42 fails to mimic effects of the Rac mutants on actin or PI(3,4,5)P3. Instead, Cdc42 inhibitors prevent cells from maintaining a persistent leading edge and frequently induce formation of multiple, short lived leading edges containing actin polymers, PI(3,4,5)P3, and activated Rac. We conclude that Rac plays a dominant role in the PI(3,4,5)P3-dependent positive feedback loop required for forming a leading edge, whereas location and stability of the leading edge are regulated by Cdc42.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号