首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The Saccharomyces cerevisiae poly(A) polymerases Trf4 and Trf5 are involved in an RNA quality control mechanism, where polyadenylated RNAs are degraded by the nuclear exosome. Although Trf4/5 homologue genes are distributed throughout multicellular organisms, their biological roles remain to be elucidated. We isolated here the two homologues of Trf4/5 in Drosophila melanogaster, named DmTRF4-1 and DmTRF4-2, and investigated their biological function. DmTRF4-1 displayed poly(A) polymerase activity in vitro, whereas DmTRF4-2 did not. Gene knockdown of DmTRF4-1 by RNA interference is lethal in flies, as is the case for the trf4 trf5 double mutants. In contrast, disruption of DmTRF4-2 results in viable flies. Cellular localization analysis suggested that DmTRF4-1 localizes in the nucleolus. Abnormal polyadenylation of snRNAs was observed in transgenic flies overexpressing DmTRF4-1 and was slightly increased by the suppression of DmRrp6, the 3′-5′ exonuclease of the nuclear exosome. These results suggest that DmTRF4-1 and DmRrp6 are involved in the polyadenylation-mediated degradation of snRNAs in vivo.  相似文献   

5.
The Trf4p/Pol sigma DNA polymerase (formerly Trf4p/Pol kappa) couples DNA replication to the establishment of sister chromatid cohesion. The polymerase is encoded by two redundant homologs in Saccharomyces cerevisiae, TRF4 and TRF5, that together define a fourth essential nuclear DNA polymerase in yeast and probably in all eukaryotes. Here we present a thorough genetic analysis of the founding member of this novel family of DNA polymerases, TRF4. Analyses of mutants carrying 1 of 34 "surface-targeted" alanine scanning mutations in TRF4 have identified those regions required for Pol sigma's essential function, for its role in DNA double-strand break repair, and for its association with chromosomes. The data strongly support the importance of the regions of predicted structural similarity with the Pol beta superfamily as critical for Trf4p/Pol sigma's essential and repair functions. Surprisingly, five lethal mutations lie outside all polymerase homology in a C-terminal region. The protein possesses Mg2+-dependent 3' to 5' exonuclease activity. Cell cycle analysis reveals that Trf4p/Pol sigma associates with chromosomes in G1, S, and G2 phases, but that association is abolished coincident with dissolution of cohesion at the metaphase-to-anaphase transition.  相似文献   

6.
7.
8.
In Saccharomyces cerevisiae, the base excision DNA repair (BER) pathway has been thought to involve only a multinucleotide (long-patch) mechanism (LP-BER), in contrast to most known cases that include a major single-nucleotide pathway (SN-BER). The key step in mammalian SN-BER, removal of the 5'-terminal abasic residue generated by AP endonuclease incision, is effected by DNA polymerase beta (Polbeta). Computational analysis indicates that yeast Trf4 protein, with roles in sister chromatin cohesion and RNA quality control, is a new member of the X family of DNA polymerases that includes Polbeta. Previous studies of yeast trf4Delta mutants revealed hypersensitivity to methylmethane sulfonate (MMS) but not UV light, a characteristic of BER mutants in other organisms. We found that, like mammalian Polbeta, Trf4 is able to form a Schiff base intermediate with a 5'-deoxyribose-5-phosphate substrate and to excise the abasic residue through a dRP lyase activity. Also like Polbeta, Trf4 forms stable cross-links in vitro to 5'-incised 2-deoxyribonolactone residues in DNA. We determined the sensitivity to MMS of strains with a trf4Delta mutation in a rad27Delta background, in an AP lyase-deficient background (ogg1 ntg1 ntg2), or in a pol4Delta background. Only a RAD27 genetic interaction was detected: there was higher sensitivity for strains mutated in both TRF4 and RAD27 than either single mutant, and overexpression of Trf4 in a rad27Delta background partially suppressed MMS sensitivity. The data strongly suggest a role for Trf4 in a pathway parallel to the Rad27-dependent LP-BER in yeast. Finally, we demonstrate that Trf5 significantly affects MMS sensitivity and thus probably BER efficiency in cells expressing either wild-type Trf4 or a C-terminus-deleted form.  相似文献   

9.
The large subunit of Saccharomyces cerevisiae DNA polymerase epsilon, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase sigma (Pol sigma), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol sigma stimulates the polymerase activity of the Pol epsilon holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol epsilon, like Pol sigma, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5 Delta mutants, like trf4 Delta mutants, are defective in DNA repair and sister chromatid cohesion.  相似文献   

10.
Requirement of fission yeast Cid14 in polyadenylation of rRNAs   总被引:1,自引:0,他引:1       下载免费PDF全文
Polyadenylation in eukaryotes is conventionally associated with increased nuclear export, translation, and stability of mRNAs. In contrast, recent studies suggest that the Trf4 and Trf5 proteins, members of a widespread family of noncanonical poly(A) polymerases, share an essential function in Saccharomyces cerevisiae that involves polyadenylation of nuclear RNAs as part of a pathway of exosome-mediated RNA turnover. Substrates for this pathway include aberrantly modified tRNAs and precursors of snoRNAs and rRNAs. Here we show that Cid14 is a Trf4/5 functional homolog in the distantly related fission yeast Schizosaccharomyces pombe. Unlike trf4 trf5 double mutants, cells lacking Cid14 are viable, though they suffer an increased frequency of chromosome missegregation. The Cid14 protein is constitutively nucleolar and is required for normal nucleolar structure. A minor population of polyadenylated rRNAs was identified. These RNAs accumulated in an exosome mutant, and their presence was largely dependent on Cid14, in line with a role for Cid14 in rRNA degradation. Surprisingly, both fully processed 25S rRNA and rRNA processing intermediates appear to be channeled into this pathway. Our data suggest that additional substrates may include the mRNAs of genes involved in meiotic regulation. Polyadenylation-assisted nuclear RNA turnover is therefore likely to be a common eukaryotic mechanism affecting diverse biological processes.  相似文献   

11.
12.
We have isolated mutants defective in DNA topoisomerases and an endonuclease from the fission yeast Schizosaccharomyces pombe by screening individual extracts of mutagenized cells. Two type I topoisomerase mutants (top1) and three endonuclease mutants (end1) were all viable. The double mutant top1 end1 was also viable and, in its extract, Mg2+- and ATP- dependent type II activity could be detected. Three temperature-sensitive (ts-) mutants having heat-sensitive (hs-) type II enzymes were isolated, and the ts- marker cosegregated with the hs- type II activity. All the ts- mutations fell in one gene (top2) tightly linked to leul in chromosome II. The nuclear division of single top2 mutants was blocked at the restrictive temperature, but the formation of a septum was not inhibited so that the nucleus was cut across with the cell plate. In contrast, the double top1 top2 mutants were rapidly arrested at various stages of the cell cycle, showing a strikingly altered nuclear chromatin region. The type II topoisomerase may have an essential role in the compaction and/or segregation of chromosomes during the nuclear division but also complement the defect of the type I enzyme whose major function is the maintenance of chromatin organization throughout the cell cycle.  相似文献   

13.
Although nascent noncoding RNAs can undergo maturation to functional RNAs or degradation by quality control pathways, the events that influence the choice of pathway are not understood. We report that the targeting of pre-tRNAs and certain other noncoding RNAs for decay by the TRAMP pathway is strongly influenced by competition between the La protein and the Rex1 exonuclease for access to their 3' ends. The La protein binds the 3' ends of many nascent noncoding RNAs, protecting them from exonucleases. We demonstrate that unspliced, end-matured, partially aminoacylated pre-tRNAs accumulate in yeast lacking the TRAMP subunit Trf4p, indicating that these pre-tRNAs normally undergo decay. By comparing RNA extracted from wild-type and mutant yeast strains, we show that Rex1p is the major exonuclease involved in pre-tRNA trailer trimming and may also function in nuclear CCA turnover. As the accumulation of end-matured pre-tRNAs in trf4Delta cells requires Rex1p, these pre-tRNAs are formed by exonucleolytic trimming. Accumulation of truncated forms of 5S rRNA and SRP RNA in trf4Delta cells also requires Rex1p. Overexpression of the La protein Lhp1p reduces both exonucleolytic pre-tRNA trimming in wild-type cells and the accumulation of defective RNAs in trf4Delta cells. Our experiments reveal that one consequence of Rex1p-dependent 3' trimming is the generation of aberrant RNAs that are targeted for decay by TRAMP.  相似文献   

14.
The FAB1 gene of budding yeast is predicted to encode a protein of 257 kDa that exhibits significant sequence homology to a human type II PI(4)P 5-kinase (PIP5K-II). The recently cloned human PIP5K-II specifically converts PI(4)P to PI(4,5)P2 (Boronenkov and Anderson, 1995). The region of highest similarity between Fab1p and PIP5K-II includes a predicted nucleotide binding motif, which is likely to correspond to the catalytic domain of the protein. Interestingly, neither PIP5K-II nor Fab1p exhibit significant homology with cloned PI 3-kinases or PI 4-kinases. fab1 mutations result in the formation of aploid and binucleate cells (hence the name FAB). In addition, loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth. Experiments with a temperature conditional fab1 mutant revealed that their vacuoles rapidly (within 30 min) enlarge to more than double the size upon shifting cells to the nonpermissive temperature. Additional experiments with the fab1 ts mutant together with results obtained with fab1 vps (vacuolar protein sorting defective) double mutants indicate that the nuclear division and cell surface integrity defects observed in fab1 mutants are secondary to the vacuole morphology defects. Based on these data, we propose that Fab1p is a PI(4)P 5-kinase and that the product of the Fab1p reaction, PIP2, functions as an important regulator of vacuole homeostasis perhaps by controlling membrane flux to and/or from the vacuole. Furthermore, a comparison of the phenotypes of fab1 mutants and other yeast mutants affecting PI metabolism suggests that phosphoinositides may serve as general regulators of several different membrane trafficking pathways.  相似文献   

15.
By examining cytological phenotypes of 587 temperature-sensitive mutants of the fission yeast Schizosaccharomyces pombe, we obtained 18 mutants which cause cell division in the absence of nuclear division. By genetic analyses, these novel nuclear division arrest mutants can be classified into nine complementation groups (designated cut1cut9). The cytological phenotype of cut mutants is similar but not identical to that of DNA topoisomerase II mutants (top2). The cut1+ gene was cloned by transformation and shown to complement cut2 as well as cut1, indicating a functional relationship between the two genes. The cut genes are required for nuclear division, but their mutant phenotypes differ from most of the previously identified mutants which block nuclear division and also the subsequent cytokinesis. Fluorescence microscopy indicates that the mitotic chromosomes formed in cut mutant cells are abnormal and fail to separate properly. We suggest that cut mutations, like top2, block mitotic chromosome formation and concomitantly nuclear division, but that cytokinesis proceeds independently of the defects in nuclear division, demonstrating uncoordinated mitotic pathways. A novel mutant nuc1 is also described which shows a cytological phenotype similar to the double mutant of DNA topoisomerases I and II but contains normal levels of both DNA topoisomerase activities.  相似文献   

16.
17.
Saccharomyces cerevisiae top2 mutants deficient in topoisomerase II activity are defective in chromosome segregation during both mitotic and meiotic cell divisions. To identify proteins that act in concert with topoisomerase II during chromosome segregation in S.cerevisiae, we have used a two-hybrid cloning approach. We report the isolation of the PAT1 gene (for protein associated with topoisomerase II), which encodes a novel 90 kDa proline- and glutamine-rich protein that interacts with a highly conserved, leucine-rich region of topoisomerase II in vivo. Strains lacking Pat1p exhibit a slow growth rate and a phenotype reminiscent of conditional top2 mutants grown at the semi-permissive temperature; most notably, a reduced fidelity of chromosome segregation during both mitosis and meiosis. These findings indicate that the PAT1 gene is necessary for accurate chromosome transmission during cell division in eukaryotic cells and suggest that the interaction of Pat1p and topoisomerase II is an important component of this function.  相似文献   

18.
The S-M checkpoint is an intracellular signaling pathway that ensures that mitosis is not initiated in cells undergoing DNA replication. We identified cid1, a novel fission yeast gene, through its ability when overexpressed to confer specific resistance to a combination of hydroxyurea, which inhibits DNA replication, and caffeine, which overrides the S-M checkpoint. Cid1 overexpression also partially suppressed the hydroxyurea sensitivity characteristic of DNA polymerase delta mutants and mutants defective in the "checkpoint Rad" pathway. Cid1 is a member of a family of putative nucleotidyltransferases including budding yeast Trf4 and Trf5, and mutation of amino acid residues predicted to be essential for this activity resulted in loss of Cid1 function in vivo. Two additional Cid1-like proteins play similar but nonredundant checkpoint-signaling roles in fission yeast. Cells lacking Cid1 were found to be viable but specifically sensitive to the combination of hydroxyurea and caffeine and to be S-M checkpoint defective in the absence of Cds1. Genetic data suggest that Cid1 acts in association with Crb2/Rhp9 and through the checkpoint-signaling kinase Chk1 to inhibit unscheduled mitosis specifically when DNA polymerase delta or epsilon is inhibited.  相似文献   

19.
20.
ATM mutations are responsible for the genetic disease ataxia-telangiectasia (A-T). ATM encodes a protein kinase that is activated by ionizing radiation-induced double strand DNA breaks. Cells derived from A-T patients show many abnormalities, including accelerated telomere loss and hypersensitivity to ionizing radiation; they enter into mitosis and apoptosis after DNA damage. Pin2 was originally identified as a protein involved in G(2)/M regulation and is almost identical to TRF1, a telomeric protein that negatively regulates telomere elongation. Pin2 and TRF1, probably encoded by the same gene, PIN2/TRF1, are regulated during the cell cycle. Furthermore, up-regulation of Pin2 or TRF1 induces mitotic entry and apoptosis, a phenotype similar to that of A-T cells after DNA damage. These results suggest that ATM may regulate the function of Pin2/TRF1, but their exact relationship remains unknown. Here we show that Pin2/TRF1 coimmunoprecipitated with ATM, and its phosphorylation was increased in an ATM-dependent manner by ionizing DNA damage. Furthermore, activated ATM directly phosphorylated Pin2/TRF1 preferentially on the conserved Ser(219)-Gln site in vitro and in vivo. The biological significance of this phosphorylation is substantiated by functional analyses of the phosphorylation site mutants. Although expression of Pin2 and its mutants has no detectable effect on telomere length in transient transfection, a Pin2 mutant refractory to ATM phosphorylation on Ser(219) potently induces mitotic entry and apoptosis and increases radiation hypersensitivity of A-T cells. In contrast, Pin2 mutants mimicking ATM phosphorylation on Ser(219) completely fail to induce apoptosis and also reduce radiation hypersensitivity of A-T cells. Interestingly, the phenotype of the phosphorylation-mimicking mutants is the same as that which resulted from inhibition of endogenous Pin2/TRF1 in A-T cells by its dominant-negative mutants. These results demonstrate for the first time that ATM interacts with and phosphorylates Pin2/TRF1 and suggest that Pin2/TRF1 may be involved in the cellular response to double strand DNA breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号