首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boichenko VA  Hou JM  Mauzerall D 《Biochemistry》2001,40(24):7126-7132
The volume and enthalpy changes for charge transfer in the 0.1-10 micros time window in photosynthetic reaction centers of the intact cells of Synechocystis PCC 6803 were determined using pulsed, time-resolved photoacoustics. This required invention of a method to correct for the cell artifact at the temperature of maximum density of water caused by the heterogeneous system. Cells grown under either white or red light had different PS I/PS II molar ratios, approximately 3 and approximately 1.7, respectively, but invariable action spectra and effective antenna sizes of the photosystems. In both cultures, the photoacoustic measurements revealed that their thermodynamic parameters differed strongly in the spectral regions of predominant excitation of PS I (680 nm) and PS II (625 nm). On correcting for contribution of the two photosystems at these wavelengths, the volume change was determined to be -27 +/- 3 and -2 +/- 3 A3 for PS I and PS II, respectively. The energy storage on the approximately 1 micros time scale was estimated to be 80 +/- 15% and 45 +/- 10% per trap in PS I and PS II, respectively. These correspond to enthalpies of -0.33 +/- 0.2 and -1 +/- 0.2 eV for the assumed formation of ion radical pairs P700+F(AB-) and Y(Z*)P680Q(A-), respectively. Taking the free energy of the above reactions as the differences of their redox potentials in situ, apparent entropy changes were estimated to be +0.4 +/- 0.2 and -0.2 +/- 0.2 eV for PS I and PS II, respectively. These values are similar to that obtained in vitro for the purified reaction center complexes on the microsecond time scale [Hou et al. (2001) Biochemistry 40, 7109-7116, 7117-7125]. The constancy of these thermodynamic values over a 2-fold change of the ratio of PS I/PS II is support for this method of in vivo analysis. Our pulsed PA method can correct the "cell" or heterogeneous artifact and thus opens a new route for studying the thermodynamics of electron transfer in vivo.  相似文献   

2.
The thermodynamic properties of electron transfer in biological systems are far less known in comparison with that of their kinetics. In this paper the enthalpy and entropy of electron transfer in the purified photosystem I trimer complexes from Synechocystis sp. PCC 6803 have been studied, using pulsed time-resolved photoacoustics on the 1 micros time scale. The volume contraction of reaction centers of photosystem I, which results directly from the light-induced charge separation forming P(700+F(A)/F(B-) from the excited-state P700*, is determined to be -26 +/- 2 A3. The enthalpy of the above electron-transfer reaction is found to be -0.39 +/- 0.1 eV. Photoacoustic estimation of the quantum yield of photochemistry in the purified photosystem I trimer complex showed it to be close to unity. Taking the free energy of the above reaction as the difference of their redox potentials in situ allows us to calculate an apparent entropy change (TDeltaS) of +0.35 +/- 0.1 eV. These values of DeltaV and TDeltaS are similar to those of bacterial reaction centers. The unexpected sign of entropy of electron transfer is tentatively assigned, as in the bacterial case, to the escape of counterions from the surface of the particles. The apparent entropy change of electron transfer in biological system is significant and cannot be neglected.  相似文献   

3.
Photosynthesis Research - This minireview is written in honor of Vladimir A. Shuvalov, a pioneer in the area of primary photochemistry of both oxygenic and anoxygenic photosyntheses (See a News...  相似文献   

4.
The shape of the EPR spectrum of the triplet state of photosystem II reaction centers with a singly reduced primary acceptor complex QAFe2+ was studied. It was shown that the spectroscopic properties do not significantly change when the relaxation of the primary acceptor is accelerated and when the magnetic interaction between the reduced quinone molecule QA and the nonheme iron ion Fe2+ is disrupted. This observation confirmed the earlier conclusion that the anisotropy of the quantum yield of the triplet state is the main cause of the anomalous shape of the EPR spectrum. A scheme of primary processes in photosystem II that is consistent with the observed properties of the EPR spectrum of the triplet state is discussed.  相似文献   

5.
The light-induced functioning of photosystem 2 (PS 2) is directly linked to the translocation of both electrons and protons across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). Generation of ΔΨ due to S-state transitions of the water oxidation complex was demonstrated for the first time in Mn-depleted and reconstituted PS 2 core complexes incorporated into liposomes. The kinetics and relative amplitudes of the electrogenic reactions in dark-adapted samples during S1→S2, S2→S3, and S4→S0 transitions in response to the first, second and third laser flashes were comparable to those obtained in the intact PS 2 core particles. These results expand current understanding of the nature and mechanisms of electrogenic (vectorial) reactions due to a charge transfer on the donor side of PS 2.  相似文献   

6.
The EPR spectrum of the triplet state of photosystem II reaction centers has been studied in the case of the singly reduced primary acceptor complex QAFe2+. It was demonstrated that the shape of the spectrum does not change much when the relaxation of the primary acceptor is accelerated and when magnetic interaction between the reduced quinone molecule QA and the non-heme iron Fe2+ is disrupted. This observation confirms the earlier conclusion that the anomalous shape of the EPR spectrum is due mainly to the anisotropy of the quatum yield of the triplet state. A scheme of primary events in photosystem II is discussed, which is consistent with the observed properties of the EPR spectrum of the triplet state.  相似文献   

7.
Energy and electron transfer in Photosystem II reaction centers in which the photochemically inactive pheophytin had been replaced by 13(1)-deoxo-13(1)-hydroxy pheophytin were studied by femtosecond transient absorption-difference spectroscopy at 77 K and compared to the dynamics in untreated reaction center preparations. Spectral changes induced by 683-nm excitation were recorded both in the Q(Y) and in the Q(X) absorption regions. The data could be described by a biphasic charge separation. In untreated reaction centers the major component had a time constant of 3.1 ps and the minor component 33 ps. After exchange, time constants of 0.8 and 22 ps were observed. The acceleration of the fast phase is attributed in part to the redistribution of electronic transitions of the six central chlorin pigments induced by replacement of the inactive pheophytin. In the modified reaction centers, excitation of the lowest energy Q(Y) transition produces an excited state that appears to be localized mainly on the accessory chlorophyll in the active branch (B(A) in bacterial terms) and partially on the active pheophytin H(A). This state equilibrates in 0.8 ps with the radical pair. B(A) is proposed to act as the primary electron donor also in untreated reaction centers. The 22-ps (pheophytin-exchanged) or 33-ps (untreated) component may be due to equilibration with the secondary radical pair. Its acceleration by H(B) exchange is attributed to a faster reverse electron transfer from B(A) to. After exchange both and are nearly isoenergetic with the excited state.  相似文献   

8.
《BBA》1985,810(2):132-139
The photochemistry and electron-transfer activities of sodium-borohydride-treated reaction centers from the purple photosynthetic bacterium Rhodopseudomonas sphaeroides R26 have been investigated by both milliand picosecond absorption techniques. Separation from the treated reaction center of the reduction product, apparently a reduced form of one of the two molecules of bacteriochlorophyll contributing to the 800 nm ground-state absorption band, is also reported. In the near-infrared region, differences between treated and untreated reaction centers are observed in both milli- and picosecond light-induced difference spectra. However, borohydride-treated reaction centers exhibit photochemistry and electron transfer which are indistinguishable from those observed in untreated reaction centers. These results indicate that normal activity occurs in reaction centers that contain both molecules of bacteriopheophytin, but only three of the usual four molecules of bacteriochlorophyll.  相似文献   

9.
The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.  相似文献   

10.
Faller P  Pascal A  Rutherford AW 《Biochemistry》2001,40(21):6431-6440
A carotenoid (Car), a chlorophyll (Chl(Z)), and cytochrome b(559) (Cyt b(559)) are able to donate electrons with a low quantum yield to the photooxidized chlorophyll, P680(+), when photosystem II (PSII) is illuminated at low temperatures. Three pathways for electron transfer from Cyt b(559) to P680(+) are considered: (a) the "linear pathway" in which Cyt b(559) donates via Chl(Z) to Car, (b) the "branched pathway" in which Cyt b(559) donates via Car and where Chl(Z) is also able to donate to Car, and (c) the "parallel pathway" where Cyt b(559) donates to P680 without intermediate electron carriers and electron donation from Chl(Z) and Car occurs by a competing pathway. Experiments were performed using EPR and spectrophotometry in an attempt to distinguish among these pathways, and the following observations were made. (1) Using PSII with an intact Mn cluster in which Cyt b(559) was preoxidized, Car oxidation was dominant upon illumination at < or =20 K, while electron donation from Chl dominated at >120 K. (2) When Cyt b(559) was prereduced, its light-induced oxidation occurred at < or =20 K in what appeared to be all of the centers and without the formation of a detectable Car(+) intermediate. The small and variable quantity of Car(+) photoinduced in these experiments can be attributed to the residual centers in which Cyt b(559) remained oxidized prior to illumination. (3) The relative rates for irreversible electron donation from Cyt b(559) and Car were determined indirectly at 20 K by monitoring the flash-induced loss of charge separation (i.e., the accumulation of Cyt b(559)(+)Q(A)(-) or Car(+)Q(A)(-)). Similar yields per flash were observed (13% for Cyt b(559) and 8% for Car), indicating similar donation rates. The slightly lower yield with Car as a donor is attributed at least in part to slow charge recombination occurring from the Car(+)Q(A)(-) radical pair in a fraction of centers. (4) Light-induced oxidation of Cyt b(559) and Car at 20 K was monitored directly by EPR, and the rates were found to be indistinguishable. The parallel pathway predicts that when both Cyt b(559) and Car are prereduced, the relative amounts of Cyt b(559)(+) and Car(+) produced upon illumination at 20 K should depend directly on their relative electron donation rates. The measured similarity in the donation rates thus predicts comparable yields of oxidation for both donors. However, what is observed experimentally is that Cyt b(559) oxidation occurs almost exclusively, and this argues strongly against the parallel pathway. The lack of Car(+) as a detectable intermediate is attributed to rapid electron transfer from Cyt b(559) to Car(+). The trapping of Car(+) at low temperature when Cyt b(559) is preoxidized but its absence when Cyt b(559) is prereduced is taken as an argument against the simple linear pathway. Overall, the data reported here and previously favor the branched pathway over the linear pathway, while the parallel pathway is thought to be unlikely. Structural considerations provide further arguments in favor of the branched model.  相似文献   

11.
Structural aspects of photosynthetic reaction centers in bacteria and plants are discussed in relation with the ability of these structures to perform a photoinduced electron transfer from one side of the membrane to the other. A comparison is made with recently synthesized artificial models. Functional similarities between the acceptor sides of bacterial and of Photosystem-II centers are utilized to hypothesize on their structure.This review corresponds to a lecture delivered at the 3rd European Bioenergetics Conference, Hannover, September 1984.  相似文献   

12.
Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - Rb Rhodobacter - Rp Rhodopseudomonas  相似文献   

13.
Abstract

Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a “tightening” of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.  相似文献   

14.
Reaction centers from Rhodopseudomonas sphaeroides strain R-26 were prepared with varying Fe and ubiquinone (Q) contents. The photooxidation of P-870 to P-870+ was found to occur with the same quantum yield in Fe-depleted reaction centers as in control samples. The kinetics of electron transfer from the initial electron acceptor (I) to Q also were unchanged upon Fe removal. We conclude that Fe has no measurable role in the primary photochemical reaction. The extent of secondary reaction from the first quinone acceptor (QA) to the second quinone acceptor (QB) was monitored by the decay kinetics of P-870+ after excitation of reaction centers with single flashes in the absence of electron donors, and by the amount of P-870 photooxidation that occurred on the second flash in the presence of electron donors. In reaction centers with nearly one iron and between 1 and 2 ubiquinones per reaction center, the amount of secondary electron transfer is proportional to the ubiquinone content above one per reaction center. In reaction centers treated with LiClO4 and o-phenanthroline to remove Fe, the amount of secondary reaction is decreased and is proportional to Fe content. Fe seems to be required for the secondary reaction. In reaction centers depleted of Fe by treatment with SDS and EDTA, the correlation between Fe content and secondary activity is not as good as that found using LiClO4. This is probably due in part to a loss of primary photochemical activity in samples treated with SDS; but the correlation is still not perfect after correction for this effect. The nature of the back reaction between P-870+ and Q-B was investigated using stopped flow techniques. Reaction centers in the P-870+ Q-B state decay with a 1-s half-time in both the presence and absence of o-phenanthroline, an inhibitor of electron transfer between Q-B and QB. This indicates that the back reaction between P-870+ and Q-A is direct, rather than proceeding via thermal repopulation of Q-A. The P-870+ Q-B state is calculated to lie at least 100 mV in free energy below the P-870+ Q-A state.  相似文献   

15.
The proposed role for bicarbonate (HCO(3)(-)) as an intrinsic cofactor within the water-oxidizing complex (WOC) of photosystem II (PSII) [Klimov et al. (1997) Biochemistry 36, 16277-16281] was tested by investigation of its influence on the kinetics and yield of photoactivation, the light-induced assembly of the functional inorganic core (Mn(4)O(y)Ca(1)Cl(x)) starting from the cofactor-depleted apo-WOC-PSII center and free Mn(2+), Ca(2+), and Cl(-). Two binding sites for bicarbonate were found that stimulate photoactivation by accelerating the formation and suppressing the decay, respectively, of the first light-induced assembly intermediate, IM(1) [apo-WOC-Mn(OH)(2)(+)]. A high-affinity bicarbonate site (K(D) 相似文献   

16.
The mechanism of long-range electron transfer between the primary and the secondary quinone of photosynthetic reaction centers has been investigated, with particular attention on the role of the iron-histidine bridge. Computations suggest that in such a system, where the molecular subunits are packed together by H-bonds, a mobile electron, injected on one end of the chain, can be carried to the other end by switching the positions of the H-bonded hydrogens. Energy estimates would suggest that the proposed mechanism is plausible and worthy of further experimental investigations.  相似文献   

17.
The absorption changes that occur in reaction centers of the photosynthetic bacterium Rhodopseudomonas sphaeroides during the initial photochemical electron-transfer reaction have been examined. Measurements were made between 740 and 1300 nm at 295 and 80 K by using a pulse-probe technique with 610-nm, 0.8-ps flashes. An excited singlet state of the bacteriochlorophyll dimer P* was found to give rise to stimulated emission with a spectrum similar to that determined previously for fluorescence from reaction centers. The stimulated emission was used to follow the decay of P*; its lifetime was 4.1 +/- 0.2 ps at 295 K and 2.2 +/- 0.1 ps at 80 K. Within the experimental uncertainty, the absorption changes associated with the formation of a bacteriopheophytin anion, Bph-, develop in concert with the decay of P* at both temperatures, as does the absorption increase near 1250 nm due to the formation of the cation of P, P+. No evidence was found for the formation of a bacteriochlorophyll anion, Bchl-, prior to the formation of Bph-. This is surprising, because in the crystal structure of the Rhodopseudomonas viridis reaction center [Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1984) J. Mol. Biol. 180, 385-398] a Bchl is located approximately in between P and the Bph. It is possible that Bchl- (or Bchl+) is formed but, due to kinetic or thermodynamic constraints, is never present at a sufficient concentration for us to observe. Alternatively, a virtual charge-transfer state, such as P+Bchl-Bph or PBchl+Bph-, could serve to lower the energy barrier for direct electron transfer between P* and the Bph.  相似文献   

18.
The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is used to any significant extent upon excitation with red or near-infrared light. Here, it is shown that excitation with blue light into the Soret band of the reaction center gives rise to electron transfer along the alternate or B-side pathway, resulting in a charge-separated state involving the anion of the B-side bacteriopheophytin. This electron transfer is much faster than normal A-side transfer, apparently occurring within a few hundred femtoseconds. At low temperatures, the B-side charge-separated state is stable for at least 1 ns, but at room temperature, the B-side bacteriopheophytin anion is short-lived, decaying within approximately 15 ps. One possible physiological role for B-side electron transfer is photoprotection, rapidly quenching higher excited states of the reaction center.  相似文献   

19.
The aim of this article is to assemble and integrate, from a personal perspective of a research participant, seldom examined evidence that is incompatible with some basic tenets of photosynthetic electron transport, the cornerstone of which is the Z scheme. The nonconforming evidence pertaining to the mode of ferredoxin reduction and the role of the copper redox protein, plastocyanin, indicates that contrary to the Z scheme ferredoxin is reduced in two experimentally distinguishable ways: oxygenically by PS II (renamed the oxygenic photosystem), without the participation of PS I, and anoxygenically by PS I (renamed the anoxygenic photosystem). It also indicates that plastocyanin is not only, as the Z scheme asserts, the electron donor to the reaction center chlorophyll of PS I (P700) but also to the reaction center chlorophyll of PS II (P680). Other unconventional findings include evidence that the fully functional oxygenic photosystem, when operating separately from the anoxygenic photosystem, reduces plastoquinone to plastoquinol and subsequently oxidizes plastoquinol by two pathways acting in concert: one being the universally recognized DBMIB-sensitive pathway via the Rieske iron-sulfur center of the cytochrome bf complex and the other, a hitherto unrecognized, DBMIB-insensitive electron transport pathway around P680 that centers on cytochrome b-559. These nonconforming findings form the basis of an alternate hypothesis of photosynthetic electron transport that modifies and complements the Z scheme.Abbreviations PS photosystem - PQ oxidized plastoquinone - PQH2 reduced plastoquinone (plastoquinol) - QA and QB specialized membrane-bound forms of PQ - PC plastocyanin - Fd ferredoxin - BISC FAFB, membrane-bound iron-sulfur centers of PS I - DBM1B 2,5-dibromo-3-methyl-6-isopropyl-n-benzoquinone (dibromothymoquinone) - DNP-INT dinitrophenol ether of iodonitrothymol - NADP+ NADPH, oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate - FCCP carbonylcyanide-p-trifluoromethoxyphenyl-hydrazone - CCCP carbonyl cyanide-3-chlorophenylhydrazone - SF 6847 2,6,-di-(t-butyl)-4-(2,2-dicyanovinyl) phenol - diuron (DCMU) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EPR electron paramagnetic resonance - DCIP 2,6-dichloro-phenolindophenol - UHDBT 5-(n-undecyl)-6-hydroxy-4-7-dioxobenzothiazole; cytochrome b-559HP-cytochrome b-559LP, high- and low potential states of cytochrome b-559 - oxygenic reductions reductions in which water is the electron donor - BBY PS II preparation made according to Berthold et al. (1981) Dedicated to Professor Achim Trebst on his 65th birthday.Based in part on lecture in Advanced Course on Trends in Photosynthesis Research, Palma de Mallorca, Spain, September 18, 1990.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号