首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indoleglycerol phosphate synthase catalyzes the ring closure of 1-(2-carboxyphenylamino)-1-deoxyribulose 5''-phosphate to indoleglycerol phosphate, the fifth step in the pathway of tryptophan biosynthesis from chorismate. Because chemical synthesis of indole derivatives from arylamino ketones requires drastic solvent conditions, it is interesting by what mechanism the enzyme catalyzes the same condensation reaction. Seven invariant polar residues in the active site of the enzyme from Escherichia coli have been mutated directly or randomly, to identify the catalytically essential ones. A strain of E. coli suitable for selecting and classifying active mutants by functional complementation was constructed by precise deletion of the trpC gene from the genome. Judged by growth rates of transformants on selective media, mutants with either S58 or S60 replaced by alanine were indistinguishable from the wild-type, but R186 replaced by alanine was still partially active. Saturation random mutagenesis of individual codons showed that E53 was partially replaceable by aspartate and cysteine, whereas K114, E163, and N184 could not be replaced by any other residue. Partially active mutant proteins were purified and their steady-state kinetic and inhibitor binding constants determined. Their relative catalytic efficiencies paralleled their relative complementation efficiencies. These results are compatible with the location of the essential residues in the active site of the enzyme and support a chemically plausible catalytic mechanism. It involves two enzyme-bound intermediates and general acid-base catalysis by K114 and E163 with the support of E53 and N184.  相似文献   

2.
The role of hither-to-fore unrecognized long-range hydrogen bonds between main-chain amide hydrogens and polar side chains on the stability of a well-studied (betaalpha)8, TIM barrel protein, the alpha subunit of tryptophan synthase (alphaTS), was probed by mutational analysis. The F19-D46 and I97-D124 hydrogen bonds link the N terminus of a beta-strand with the C terminus of the succeeding antiparallel alpha-helix, and the A103-D130 hydrogen bond links the N terminus of an alpha-helix with the C terminus of the succeeding antiparallel beta-strand, forming clamps for the respective betaalpha or alphabeta hairpins. The individual replacement of these aspartic acid side chains with alanine leads to what appear to be closely related partially folded structures with significantly reduced far-UV CD ellipticity and thermodynamic stability. Comparisons with the effects of eliminating another main-chain-side-chain hydrogen bond, G26-S33, and two electrostatic side-chain-side-chain hydrogen bonds, D38-H92 and D112-H146, all in the same N-terminal folding unit of alphaTS, demonstrated a unique role for the clamp interactions in stabilizing the native barrel conformation. Because neither the asparagine nor glutamic acid variant at position 46 can completely reproduce the spectroscopic, thermodynamic, or kinetic folding properties of aspartic acid, both size and charge are crucial to its unique role in the clamp hydrogen bond. Kinetic studies suggest that the three clamp hydrogen bonds act in concert to stabilize the transition state leading to the fully folded TIM barrel motif.  相似文献   

3.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

4.
An alpha-helix and a beta-strand are said to be interactively packed if at least one residue in each of the secondary structural elements loses 10% of its solvent accessible contact area on association with the other secondary structural element. An analysis of all such 5,975 nonidentical alpha/beta units in protein structures, defined at < or = 2.5 A resolution, shows that the interaxial distance between the alpha-helix and the beta-strand is linearly correlated with the residue-dependent function, log[(V/nda)/n-int], where V is the volume of amino acid residues in the packing interface, nda is the normalized difference in solvent accessible contact area of the residues in packed and unpacked secondary structural elements, and n-int is the number of residues in the packing interface. The beta-sheet unit (beta u), defined as a pair of adjacent parallel or antiparallel hydrogen-bonded beta-strands, packing with an alpha-helix shows a better correlation between the interaxial distance and log(V/nda) for the residues in the packing interface. This packing relationship is shown to be useful in the prediction of interaxial distances in alpha/beta units using the interacting residue information of equivalent alpha/beta units of homologous proteins. It is, therefore, of value in comparative modeling of protein structures.  相似文献   

5.
Protein phosphatase 1 (PP1) is widely distributed among tissues and species and acts as a regulator of many important cellular processes. By targeting the catalytic part of PP1 (PP1C) toward particular loci and substrates, regulatory subunits constitute key elements conferring specificity to the holoenzyme. Here, we report the identification of an (alpha/beta)8-barrel-like structure within the N-ter stretch of the human PP1 regulatory subunit hGM, which is part of the family of diverse proteins associated with glycogen metabolism. Protein homology modeling gave rise to a three-dimensional (3D) model for the 381 N-ter residue stretch of hGM, based on sequence similarity with Streptomyces olivochromogenes xylose isomerase, identified by using FASTA. The alignment was subsequently extended by using hydrophobic cluster analysis. The homology-derived model includes the putative glycogen binding area located within the 142-230 domain of hGM as well as a structural characterization of the PP1C interacting domain (segment 51-67). Refinement of the latter by molecular dynamics afforded a topology that is in agreement with previous X-ray studies (Egloff et al., 1997). Finite difference Poisson-Boltzmann calculations performed on the interacting domains of PP1C and hGM confirm the complementarity of the local electrostatic potentials of the two partners. This work highlights the presence of a conserved fold among distant species (mammalian, Caenorhabditis elegans, yeast) and, thus, emphasizes the involvement of PP1 in crucial basic cellular functions.  相似文献   

6.
Summary The inherent infidelity of Taq DNA polymerase in the polymerase chain reaction was exploited to produce random mutations in thetrp A gene. Screening of the resulting clones allowed selection of non-interactive mutant subunits retaining their intrinsic catalytic activity. Two single changes responsible for this phenotype were identified by DNA sequencing as: 126 valine (GTG)glutamic acid (GAG) and 128 valine (GTT)aspartic acid (GAT). Three single changes giving a non-interactive phenotype with an impaired intrinsic catalytic activity were identified by DNA sequencing as a66 asparagine (AAC)aspartic acid (GAC); 109lysine (AAA) arginine (AGA); 118 cysteine (TGC)arginine (CGC). Where possible, we individually assessed the importance of these residues in interaction in light of structural information from X-ray crystallography and by intergeneric protein sequence comparison.  相似文献   

7.
The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.  相似文献   

8.
The structure of Xylose isomerase (X.I.) from Actinoplanes missouriensis has been solved to 2.8 Angstroms resolution. Phases were determined from a single Eu3+ derivative and from the noncrystallographic 222 symmetry of the tetrameric molecule. An atomic model was built and subjected to restrained crystallographic refinement. The resulting model is shown to be closely similar to the recently reported X.I.'s structures from three other bacterial sources. Each monomer is found to be composed of an eight-stranded alpha/beta "T.I.M." barrel forming an N-terminal domain of 328 residues followed by a large loop of 66 residues embracing an adjacent subunit. Analysis of intersubunit packing shows that the X.I. tetramer is an assembly of two tight dimers. The beta barrel fits a simple hyperboloid model as other T.I.M. barrels do. The active site, identified as the binding site for the inhibitor xylitol, is located at the carboxyl end of the beta strands in the barrel next to a pair of binding sites for Eu3+ ions, which are assumed to be sites for the divalent ions involved in catalysis. Active sites in the tetramer are oriented towards the interface between dimers. It is suggested that subunit interfaces might stabilize the active site region and this might explain the oligomeric nature of other alpha/beta barrel enzymes.  相似文献   

9.
Knock out mice deficient for the splice-isoform alphaalpha of neuronal nitric oxide synthase (nNOSalphaalpha) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, betabeta and gammagamma, we generated isoform-specific anti-peptide antibodies against the nNOSalphaalpha specific betabeta-finger motif involved in PDZ domain scaffolding and the nNOSbetabeta specific N-terminus. The nNOSalphaalpha betabeta-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOSalphaalpha on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the betabeta-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOSalphaalpha betabeta-finger antibody in pull-down assays. By contrast, nNOSalphaalpha betabeta-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOSalphaalpha knock out mice, nNOSalphaalpha was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting betabeta/gammagamma-isoforms in these cells. The nNOSbetabeta antibody clearly detected bacterial expressed nNOSbetabeta fusion protein and nNOSbetabeta in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOSbetabeta in nNOSalphaalpha deficient animals.  相似文献   

10.
Many (alpha/beta)8-barrel enzymes contain their conserved sequence regions at or around the beta-strand segments that are often preceded and succeeded by glycines and prolines, respectively. alpha-Amylase is one of these enzymes. Its sequences exhibit a very low degree of similarity, but strong conservation is seen around its beta-strands. These conserved regions were used in the search for similarities with beta-strands of other (alpha/beta)8-barrel enzymes. The analysis revealed an interesting similarity between the segment around the beta 2-strand of alpha-amylase and the one around the beta 4-strand of glycolate oxidase that are flanked in loops by glycines and prolines. The similarity can be further extended on other members of the alpha-amylase and glycolate oxidase subfamilies, i.e., cyclodextrin glycosyltransferase and oligo-1,6-glucosidase, and flavocytochrome b2, respectively. Moreover, the alpha-subunit of tryptophan synthase, the (alpha/beta)8-barrel enzyme belonging to the other subfamily of (alpha/beta)8-barrels, has both investigated strands, beta 2 and beta 4, similar to beta 2 of alpha-amylase and beta 4 of glycolate oxidase. The possibilities of whether this similarity exists only by chance or is a consequence of some processes during the evolution of (alpha/beta)8-barrel proteins are briefly discussed.  相似文献   

11.
The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.  相似文献   

12.
There are two tryptophan residues in the lens alphaB-crystallin, Trp9 and Trp60. We prepared two Trp --> Phe substituted mutants, W9F and W60F, for use in a spectroscopic study. The two tryptophan residues contribute to Trp fluorescence and near-ultraviolet circular dichroism (UV CD) differently. The major difference in the near-UV CD is the contribution of 1La of Trp: it is positive in W60F but becomes negative in W9F. Further analysis of the near-UV CD shows an increased intensity in the region of 270-280 nm for W60F, suggesting that the Tyr48 is affected by the W60F mutation. It appears that Trp60 is located in a more rigid environment than Trp9, which agrees with a recent structural model in which Trp60 is in a beta-strand.  相似文献   

13.
The electrostatic properties of seven alpha/beta-barrel enzymes selected from different evolutionary families were studied: triose phosphate isomerase, fructose-1,6-bisphosphate aldolase, pyruvate kinase, mandelate racemase, trimethylamine dehydrogenase, glycolate oxidase, and narbonin, a protein without any known enzymatic activity. The backbone of the alpha/beta-barrel has a distinct electrostatic field pattern, which is dipolar along the barrel axis. When the side chains are included in the calculations the general effect is to modulate the electrostatic pattern so that the electrostatic field is generally enhanced and is focused into a specific area near the active site. We use the electrostatic flux through a square surface near the active site to gauge the functionally relevant magnitude of the electrostatic field. The calculations reveal that in six out of the seven cases the backbone itself contributes greater than 45% of the total flux. The substantial electrostatic contribution of the backbone correlates with the known preference of alpha/beta-barrel enzymes for negatively charged substrates.  相似文献   

14.
To identify peptide units that make up a single-domain protein, we searched for possible combinations of N and C-fragments that exhibit functional complementation, and attempted an exhaustive evaluation of peptide unit boundaries. The tryptophan synthase alpha subunit was used as a model enzyme, which has a single TIM (beta8/alpha8) barrel domain. Libraries comprising randomly digested N and C-fragments were constructed, and clones expressing enzymatic activity were selected by the ability to confer growth of the Escherichia coli trpA mutant on a medium lacking tryptophan. More than 50 clones were obtained, and two cleavable positions were found on the loops after extra-helix 2' and helix 5. Half of the clones harbored N and C-fragments having an overlap between two fragments. The remaining clones harbored one fragment made by the fusion of N and C-fragments with insertional sequence duplication. Mapping the frequency of occurrence of fragment overlap and insertional duplication showed significant peaks at two loops, which coincide with the cleavable sites. These results suggest that the boundaries of unit fragments are located at these positions, and that bisection, fragment overlap and insertion are all possible at the unit boundaries.  相似文献   

15.
The protein kinase CK2 (former name: "casein kinase 2") predominantly occurs as a heterotetrameric holoenzyme composed of two catalytic chains (CK2alpha) and two noncatalytic subunits (CK2beta). The CK2beta subunits form a stable dimer to which the CK2alpha monomers are attached independently. In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed the strong thermostabilization effect of CK2alpha on CK2beta with an upshift of the CK2alpha melting temperature of more than 9 degrees . Using isothermal titration calorimetry (ITC) we measured a dissociation constant of 12.6 nM. This high affinity between CK2alpha and CK2beta is mainly caused by enthalpic rather than entropic contributions. Finally, we determined a crystal structure of the CK2beta construct to 2.8 A resolution and revealed by structural comparisons with the CK2 holoenzyme structure that the CK2beta conformation is largely conserved upon association with CK2alpha, whereas the latter undergoes significant structural adaptations of its backbone.  相似文献   

16.
Conformational changes in the β2α2 and β6α6 loops in the alpha subunit of tryptophan synthase (αTS) are important for enzyme catalysis and coordinating substrate channeling with the beta subunit (βTS). It was previously shown that disrupting the hydrogen bond interactions between these loops through the T183V substitution on the β6α6 loop decreases catalytic efficiency and impairs substrate channeling. Results presented here also indicate that the T183V substitution decreases catalytic efficiency in Escherchia coli αTS in the absence of the βTS subunit. Nuclear magnetic resonance (NMR) experiments indicate that the T183V substitution leads to local changes in the structural dynamics of the β2α2 and β6α6 loops. We have also used NMR chemical shift covariance analyses (CHESCA) to map amino acid networks in the presence and absence of the T183V substitution. Under conditions of active catalytic turnover, the T183V substitution disrupts long-range networks connecting the catalytic residue Glu49 to the αTS-βTS binding interface, which might be important in the coordination of catalytic activities in the tryptophan synthase complex. The approach that we have developed here will likely find general utility in understanding long-range impacts on protein structure and dynamics of amino acid substitutions generated through protein engineering and directed evolution approaches, and provide insight into disease and drug-resistance mutations.  相似文献   

17.
A novel mutant of the catalytic alpha subunit of human protein kinase CK2 (CK2 alpha) was designed in an attempt to clarify the role of the carboxylic-terminal segment characteristic of vertebrates, excluding fish. Starting from the sequence alignments, we constructed a phylogenetic tree of the primary structure of CK2 alpha. On this basis, we substituted two distal prolines with alanines (PA 382-384). Theoretical calculations and spectropolarimetry measurements, performed both on native and mutant subunits, indicate an increased content of alpha-helix after this double amino acidic substitution. In order to clarify the structure/function relationship of the C-terminal region, we verified if the structural change affects the catalytic activity of CK2 alpha. The mutant exhibits slightly increased phosphorylation efficiency, but reduced ability to transfer phosphate in comparison with the native subunit. At last, we compared the thermal stability of the mutant with respect to the native subunit and we tested the proteolytic degradability. The observation that the PA 382-384 mutant exhibits an increased thermal and proteolytic stability suggests that this mutant could be employed to solve the three-dimensional (3D) structure of human CK2 alpha and to overcome difficulties in crystallizing the native form.  相似文献   

18.
Catalytic asymmetric synthesis of alpha,beta-epoxy esters and alpha,beta-epoxy carboxylic acid derivatives is described. Catalytic asymmetric epoxidation of alpha,beta-unsaturated carboxylic acid imidazolides using La-BINOL-Ph(3)As=O complex gave the corresponding alpha,beta-epoxy peroxy tert-butyl esters, which were directly converted to the alpha,beta-epoxy methyl esters by adding methanol to the reaction. This catalytic system had broad generality for epoxidation of various substrates. With the use of 5-10 mol% of the catalyst, both beta-aryl and beta-alkyl-substituted-alpha,beta-epoxy methyl esters were obtained in up to 91% yield and in up to 93% enantiomeric excess. In addition, efficient transformations of alpha,beta-epoxy peroxy tert-butyl esters into the alpha,beta-epoxy amides, alpha,beta-epoxy aldehydes, and gamma,delta-epoxy beta-keto esters are also reported.  相似文献   

19.
The (beta/alpha)(8)-barrel is the most common protein fold. Similar structural properties for folding intermediates of (beta/alpha)(8)-barrel proteins involved in tryptophan biosynthesis have been reported in a number of experimental studies; these intermediates have the last two beta-strands and three alpha-helices partially unfolded, with other regions of the polypeptide chain native-like in conformation. To investigate the detailed folding/unfolding pathways of these (beta/alpha)(8)-barrel proteins, temperature-induced unfolding simulations of N-(5'-phosphoribosyl)anthranilate isomerase from Escherichia coli were carried out using a special-purpose parallel computer system. Unfolding simulations at five different temperatures showed a sequential unfolding pathway comprised of several events. Early events in unfolding involved disruption of the last two strands and three helices, producing an intermediate ensemble similar to those detected in experimental studies. Then, denaturation of the first two betaalpha units and separation of the sixth strand from the fifth took place independently. The remaining central betaalphabetaalphabeta module persisted the longest during all simulations, suggesting an important role for this module as the incipient folding scaffold. Our simulations also predicted the presence of a nucleation site, onto which several hydrophobic residues condensed forming the foundation for the central betaalphabetaalphabeta module.  相似文献   

20.
Tryptophan decarboxylase (TDC) converts tryptophan (Trp) into tryptamine, consequently increasing the metabolic flow of tryptophan derivatives into the production of secondary metabolites such as indole alkaloids. We inserted an expression cassette containing OsTDC, a putative tryptophan decarboxylase gene from rice, into an expression plasmid vector containing OASA1D, the feedback‐resistant anthranilate synthase alpha‐subunit mutant (OASA1D). Overexpression of OASA1D has been reported to significantly increase Trp levels in rice. The co‐expression of OsTDC and OASA1D in rice calli led to almost complete depletion of the Trp pool and a consequent increase in the tryptamine pool. This indicates that TDC inactivity is a contributory factor for the accumulation of Trp in rice transgenics overexpressing OASA1D. Metabolic profiling of the calli expressing OsTDC and OASA1D revealed the accumulation of serotonin and serotonin‐derived indole compounds (potentially pharmacoactive β‐carbolines) that have not been reported from rice. Rice calli overexpressing OASA1D:OASA1D is a novel system for the production of significant amounts of pharmacologically useful indole alkaloids in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号