首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Growth of turgid cells, defined as an irreversible increase in cell volume and surface area, can be regarded as a physical process governed by the mechanical properties of the cell wall and the osmotic properties of the protoplast. Irreversible cell expansion is produced by creating a driving force for water uptake by decreasing the turgor through stress relaxation in the cell wall. This mechano-hydraulic process thus depends on and can be controlled by the mechanical properties of the wall, which in turn are subject to modification by wall loosening and wall stiffening reactions. The biochemical mechanisms of these changes in mechanical wall properties and their regulation by internal signals (e.g., hormones) or external signals (e.g., light, drought stress) are at present incompletely understood and subject to intensive research. These signals act on walls that have the properties of composite materials in which the molecular structure and spatial organization of polymers rather than the distribution of mechanical stresses dictate the allometry of cell and organ growth and thus cell and organ shape. The significance of cell wall architecture for allometric growth can be demonstrated by disturbing the oriented deposition of wall polymers with microtubule-interfering drugs such as colchicine. Elongating organs (e.g., cylindrical stems or coleoptiles) composed of different tissues with different mechanical properties exhibit longitudinal tissue tensions resulting in the transfer of wall stress from inner to peripheral cell layers that adopt control over organ growth. For physically analyzing the growth process leading to seed germination, the same mechanical and hydraulic parameters as in normal growth are principally appropriate. However, for covering the influences of the tissues that restrain embryo expansion (seed coat, endosperm), an additional force and a water permeability term must be considered.  相似文献   

2.
Growing plant cells increase in volume principally by water uptake into the vacuole. There are only three general mechanisms by which a cell can modulate the process of water uptake: (a) by relaxing wall stress to reduce cell turgor pressure (thereby reducing cell water potential), (b) by modifying the solute content of the cell or its surroundings (likewise affecting water potential), and (c) by changing the hydraulic conductance of the water uptake pathway (this works only for cells remote from water potential equilibrium). Recent studies supporting each of these potential mechanisms are reviewed and critically assessed. The importance of solute uptake and hydraulic conductance is advocated by some recent studies, but the evidence is indirect and conclusions remain controversial. For most growing plant cells with substantial turgor pressure, it appears that reduction in cell turgor pressure, as a consequence of wall relaxation, serves as the major initiator and control point for plant cell enlargement. Two views of wall relaxation as a viscoelastic or a chemorheological process are compared and distinguished.  相似文献   

3.
A stress-relaxation method has been developed to measure the mechanical property of the plant cell wall, as a physically defined terms. In the method, the stress relaxation property of the cell wall is simulated with a Maxwell viscoelastic model whose character is represented by four parameters; the minimum relaxation time, To, the relaxation rate, b, the maximum relaxation time, Tm and the residual stress, c. Thus, the mechanical property of the cell wall is represented by the four parameters. Physical and physiological meanings of the parameters are discussed. Auxin effects on the parameters were also studied. The cell elongation is simply thought to be extension of the cell wall under a force. The extension of the cell wall can be simulated by the mechanical property of the cell wall. However, the calculated extension was found to be incomparable to the real cell growth, indicating that there has to be other factors limiting the rate of cell growth. Major factors governing cell growth are discussed to be the cell wall mechanical property, the osmotic potential and water movement in the apoplast. A possibility to predict cell expansion with the three factors was discussed and a novel equation representing cell growth was obtained: $$1/R = 1/R_w + 1/R_p $$ whereR is the rate of cell elongation,R w is the rate of cell wall extension due to the osmotic pressure andR p is the rate of cell elongation determined by water conductivity.  相似文献   

4.
Cosgrove DJ 《Plant physiology》1981,68(6):1439-1446
The physical analysis of plant cell enlargment is extended to show the dependence of turgor pressure and growth rate under steady-state conditions on the parameters which govern cell wall extension and water transport in growing cells and tissues, and to show the dynamic responses of turgor and growth rate to instantaneous changes in one of these parameters. The analysis is based on the fact that growth requires simultaneous water uptake and irreversible wall expansion. It shows that when a growing cell is perturbed from its steady-state growth rate, it will approach the steady-state rate with exponential kinetics. The half-time of the transient adjustment depends on the biophysical parameters governing both water transport and irreversible wall expansion. When wall extensibility is small compared to hydraulic conductance, the growth rate is controlled by the yielding properties of the cell wall, while the half-time for changes in growth rate is controlled by the water transport parameters. The reverse situation occurs when hydraulic conductance is lower than wall extensibility. The analysis also shows explicitly that turgor pressure is tightly coupled with growth rate when growth is controlled by both water transport and wall yielding parameters.  相似文献   

5.
The roles of plasmalemma electrogenic proton pumps in elongation growth of plant stems are discussed on the basis of growth-electrophysiological studies on hypocotyl segments ofVigna unguiculata. Plant stems usually have two spatially separated electrogenic proton pumps: the surface proton pump which is located on the surface membrane of the symplast and the xylem proton pump, on the cell membrane of the symplast/xylem apoplast boundary. The surface proton pump excretes protons into the surface cell wall layer and causes the loosening of the cell wall. The xylem proton pump excretes protons into the xylem apoplast and drives the uptake of solute and water into the symplastvia secondary and/or tertiary active mechanisms: the proton cotransport system and the apoplast canal system. Both the surface and the xylem proton pumps are active during elongation growth because both the yielding of cell wall loosening and the uptake of water are necessary for continued elongation growth.  相似文献   

6.
Stem Elongation and Cell Wall Proteins in Flowering Plants   总被引:5,自引:0,他引:5  
Abstract: The growth of stems (hypocotyls, epicotyls) and stem-like organs (coleoptiles) in developing seedlings is largely due to the elongation of cells in the sub-apical region of the corresponding organ. According to the organismal concept of plant development, the thick outer epidermal wall, which can be traced back to the peripheral cell wall of the zygote, creates a sturdy organ sheath that determines the rate of stem elongation. The cells of the inner tissues are the products of secondary partitioning of one large protoplast; these turgid, thin-walled cells provide the driving force for organ growth. The structural differences between these types of cell walls are described (outer walls: thick, sturdy, helicoidal cellulose architecture; inner walls: thin, extensible, transversely-oriented cellulose microfibrils). On the basis of these facts, current models of cell wall loosening (and wall stiffening) are discussed with special reference to the expansin, enzymatic polymer remodelling and osmiophilic particle hypothesis. It is concluded that the exact biochemical mechanism(s) responsible for the coordinated yielding of the growth-controlling peripheral organ wall(s) have not yet been identified.  相似文献   

7.
Plant growth and development depend on anisotropic cell expansion. Cell wall yielding provides the driving force for cell expansion, and is regulated in part by the oriented deposition of cellulose microfibrils around the cell. Our current understanding of anisotropic cell expansion combines hypotheses generated by more than 50 years of research. Here, we discuss the evolving views of researchers in the field of cellulose synthesis, and highlight several unresolved questions. Recent results using live-cell imaging have illustrated novel roles for cortical microtubules in cellulose synthesis, and further research using these approaches promises to reveal exciting links between the cytoskeleton, intracellular trafficking, and anisotropic growth.  相似文献   

8.
A linear stress strain analyzer was used to determine the effects of inhibitors of RNA and protein synthesis on auxin-induced increases in cell wall extensibility. With etiolated soybean hypocotyl, maize mesocotyl and Avena coleoptile sections and light-grown pea internode sections, inhibition of RNA synthesis resulted in inhibition of auxin-induced extensibility changes and cell expansion. The results with both actinomycin D and cycloheximide support an earlier conclusion that unstable cell constituents, presumably enzymes, are essential for cell wall loosening induced by auxin as well as for cell elongation.  相似文献   

9.
The effect of ethylene on petiole growth of the Fringed Waterlily (Nymphoides peltata (S.G. Gmelin) O. Kuntze) changes during leaf ontogeny. During early development (before expansion of laminae), ethylene causes an increase in both cell number and cell size; later in development, promotion of rapid cell expansion is the dominant effect. The early effects may contribute to the accommodation of new leaves to water columns of different depth. The later effects on cell expansion only are shown to contribute to the rapid accommodation of floating leaves when changes in water level submerge the laminae. This kind of accommodation results from an interaction between accumulated ethylene, which increases wall extensibility, and the tension in petioles due to natural buoyancy which, it is suggested, supplements the driving force for cell expansion. Cell age (position) within a petiole and age of the whole petiole influence the growth response to ethylene alone and the amount of extra growth produced by applying tension when ethylene is present. In young petioles, apical cells are highly sensitive to ethylene and tension causes little further growth; older cells in both immature and mature petioles show little response to ethylene unless the petiole is under tension. Young (but not mature) petioles respond slowly to applied tension even in the absence of ethylene. It is concluded that as cells age the driving force for expansion limits increasingly their capacity to respond to the wall-loosening effects of ethylene. Dual sensitivity to ethylene and buoyant tension facilitates rapid accommodation responses but sensitivity of young petioles to tension alone may exclude Nymphoides from habitats where current velocity is appreciable.  相似文献   

10.
Daniel J. Cosgrove 《Planta》1988,176(1):109-116
Rapid suppression of hypocotyl elongation by blue light in cucumber (Cucumis sativus L.) was studied to examine possible hydraulic and wall changes responsible for diminished growth. Cell-sap osmotic pressure, measured by vaporpressure osmometry, was not decreased by blue light; turgor pressure, measured by the pressureprobe technique, remained constant during the growth inhibition; and stem hydraulic conductance, measured by dynamic and static methods, was likewise unaffected by blue light. Wall yielding properties were assessed by the pressure-block technique for in-vivo stress relaxation. Blue light reduced the initial rate of relaxation by 77%, but had little effect on the final amount of relaxation. The results demonstrate that blue irradiation acts to decrease the wall yielding coefficient, but not the yield threshold. Stress-strain (Instron) analysis showed that irradiation of the seedlings had little effect on the mechanical extensibilities of the isolated wall. The results indicate that blue light can reduce cell-wall loosening without affecting bulk viscoelastic properties, and indicate a chemorheological mechanism of cell-wall expansion.Abbreviations and symbols BL blue light - wall yield coefficient - Y wall yield threshold - P turgor pressure - L hydraulic conductance - g radial water-potential gradient supporting cell expansion - osmotic pressure - Pi initial chamber pressure needed to stop growth - Pf final chamber pressure needed to stop growth  相似文献   

11.
Leaf pavement cell expansion in light depends on apoplastic acidification by a plasma membrane proton-pumping ATPase, modifying cell wall extensibility and providing the driving force for uptake of osmotically active solutes generating turgor. This paper shows that the plant hormone ABA inhibits light-induced leaf disk growth as well as the blue light-induced pavement cell growth in pea (Pisum sativum L.). In the phytochrome chromophore-deficient mutant pcd2, the effect of ABA on the blue light-induced apoplastic acidification response, which exhibits a high fluence phase via phytochrome and a low fluence phase via an unknown blue light receptor, is still present, indicating an interaction of ABA with the blue light receptor pathway. Furthermore, it is shown that ABA inhibits the blue light-induced apoplastic acidification reversibly. These results indicate that the effect of ABA on apoplastic acidification can provide a mechanism for short term, reversible adjustment of leaf growth rate to environmental change.Key Words: ABA, apoplastic acidification, blue light, epidermal pavement cell growth, leaf growth, pea (Pisum sativum L.), signal integration  相似文献   

12.
Mechanism of Gibberellin-Dependent Stem Elongation in Peas   总被引:7,自引:2,他引:5       下载免费PDF全文
Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.  相似文献   

13.
Growing pea stem tissue, when isolated from an external supply of water, undegoes stress relaxation because of continued loosening of the cell wall. A theoretical analysis is presented to show that such stress relaxation should result in an exponential decrease in turgor pressure down to the yield threshold (Y), with a rate constant given by ε where is the metabolically maintained irreversible extensibility of the cell wall and ε is the volumetric elastic modulus of the cell. This theory represents a new method to determine in growing tissues.

Stress relaxation was measured in pea (Pisum sativus L.) stem segments using the pressure microprobe technique. From the rate of stress relaxation, of segments pretreated with water was calculated to be 0.08 per megapascal per hour while that of auxin-pretreated tissue was 0.24 per megapascal per hour. These values agreed closely with estimates of made by a steady-state technique. The yield threshold (0.29 megapascal) was not affected by auxin. Technical difficulties with measuring by stress relaxation may arise due to an internal water reserve or due to changes in subsequent to excision. These difficulties are discussed and evaluated.

A theoretical analysis is also presented to show that the tissue hydraulic conductance may be estimated from the T½ of tissue swelling. Experimentally, pea stems had a swelling T½ of 2.0 minutes, corresponding to a relative hydraulic conductance of about 2.0 per megapascal per hour. This value is at least 8 times larger than . From these data and from computer modeling, it appears that the radial gradient in water potential which sustains water uptake in growing pea segments is small (0.04 megapascal). This means that hydraulic conductance does not substantially restrict growth. The results also demonstrate that the stimulation of growth by auxin can be entirely accounted for by the change in .

  相似文献   

14.
White fluorescent light (5 W m−2) inhibited subhook growth in derooted Alaska pea cuttings. In the inner tissue of the subhook, it inhibited the increase in osmotic potential during 18 h incubation. In the epidermis, on the other hand, light did not affect the osmotic potential. Light increased the minimum-stress relaxation time (T0) of the inner tissue cell walls, but did not change T0 of the epidermal cell wall. Light decreased tissue stress determined by the split test and the ability of the inner tissue to extend by water absorption. The short-term light effect on subhook growth. T0, and the tissue stress almost disappeared when pea cuttings were transferred to darkness. These facts suggest that light changes the mechanical properties of the cell wall in the inner tissue of shoots, and decreases tissue stress, which is considered to be the driving force of shoot growth.  相似文献   

15.
Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth.  相似文献   

16.
Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.  相似文献   

17.
The relationship between growth, in vivo extensibility, and tissue tension in the first 3 internodes of 5, 6, and 7 day-old pea plants (Pisum sativum L. cv Alaska), grown under continuous red light was investigated. The upper 15 millimeters of each internode was marked with ink and its elongation growth measured over the next subsequent 8 hours. In vivo extensibility was measured by stretching living tissue at constant force (creep test) in a custom-built extensiometer. Tissue tension was determined by (a) measuring the rate of expansion of the isolated cortical cylinder after adding water and the amount of contraction of the epidermis after peeling, and (b) by use of the `split section test.' A good correlation between rate of elongation growth, in vivo extensibility, and tissue tension was established. The epidermis peeled from the growing third internode of 7 day-old plants and measured immediately showed a plastic extensibility (Epl twice that of peels from nongrowing excised sections. This high Epl-value was lost on incubation of the sections in distilled water, and was subsequently restored by incubating the sections in auxin (indole-3-acetic acid). We conclude that the in situ growth of the internodes is a function of tissue-tension, which provides the driving force of organ growth, and the extensibility (Epl of the outer epidermal wall, which is in the growing plant in a `loosened' state. We furthermore suggest that in the intact plant auxin is causally involved in the wall loosening process in the epidermis.  相似文献   

18.
植物根系和叶片生长对水分亏缺的原初反应   总被引:14,自引:0,他引:14  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一。主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上 ,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下 2个过程来补偿水分胁迫的作用 :调节扩展生长需要的细胞临界膨压 ;溶质在延伸组织中的运移。此外 ,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制  相似文献   

19.
Journal of Plant Research - Expansin is a non-enzymatic protein which plays a pivotal role in cell wall loosening by inducing stress relaxation and extension in the plant cell wall. Previous...  相似文献   

20.
Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号