首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen different, chemically defined phosphatidylcholines, dispersed in aqueous medium in the form of large unilamellar vesicles, have been tested for solubilization by the non-ionic detergent Triton X-100. The temperatures (either 20 °C or 45 °C) were such that the bilayers were always in the liquid-disordered state. For each case, the solubilization parameters, Don (total detergent: lipid mole ratio producing the onset of solubilization) and D50 (total detergent: lipid mole ratio producing 50% solubilization), were determined under equilibrium conditions. Both parameters varied generally in parallel. When double bonds were introduced to the acyl chains, other factors remaining constant, solubilization became more difficult, i.e., more detergent was required. Cis-unsaturated phospholipids required more detergent than the corresponding trans-isomers. Increasing chain length in saturated phospholipids between C12 and C16 decreased moderately the detergent/lipid ratios causing solubilization. Acyl and alkyl phospholipids were equally susceptible to Triton X-100 solubilization. Lipid chain order, as measured by DPH fluorescence polarization, seemed to facilitate solubilization, perhaps because more ordered bilayers have a smaller capacity to accommodate detergent monomers without breaking down into lipid-detergent mixed micelles.  相似文献   

2.
Solubilization of sonicated unilamellar vesicles by Triton X-100 is a complex process. Solubilization starts at low detergent concentrations, as compared to the case of large vesicles, and is accompanied by the simultaneous rapid formation of large multilamellar liposomes. Measurements of lipid and detergent distribution indicate that, at a 1:1 lipid:detergent mole ratio, about one-third of the lipid, with most of the detergent, is solubilized in the form of mixed micelles. The remaining two-thirds are in the form of multilamellar liposomes, virtually free of detergent. Higher detergent concentrations also bring about the solubilization of these liposomes.  相似文献   

3.
Gel filtration with bile salts at intermixed micellar/vesicular concentrations (IMC) in the eluant has been proposed to isolate vesicles and micelles from supersaturated model biles, but the presence of vesicular aggregates makes this method unreliable. We have now validated a new method for isolation of various phases. First, aggregated vesicles and - if present - cholesterol crystals are pelleted by short ultracentrifugation. Cholesterol contained in crystals and vesicular aggregates can be quantitated from the difference of cholesterol contents in the pellets before and after bile salt-induced solubilization of the vesicular aggregates. Micelles are then isolated by ultrafiltration of the supernatant through a highly selective 300 kDa filter and unilamellar vesicles by dialysis against buffer containing bile salts at IMC values. Lipids contained in unilamellar vesicles are also estimated by subtraction of lipid contents in filtered micelles from lipid contents in (unilamellar vesicle+micelle containing) supernatant ('subtraction method'). 'Ultrafiltration-dialysis' and 'subtraction' methods yielded identical lipid solubilization in unilamellar vesicles and identical vesicular cholesterol/phospholipid ratios. In contrast, gel filtration yielded much more lipids in micelles and less in unilamellar vesicles, with much higher vesicular cholesterol/phospholipid ratios. When vesicles obtained by dialysis were analyzed by gel filtration, vesicular cholesterol/phospholipid ratios increased strongly, despite correct IMC values for bile salts in the eluant. Subsequent extraction of column material showed significant amounts of lipids. In conclusion, gel filtration may underestimate vesicular lipids and overestimate vesicular cholesterol/phospholipid ratios, supposedly because of lipids remaining attached to the column. Combined ultracentrifugation-ultrafiltration-dialysis should be considered state-of-the-art methodology for quantification of cholesterol carriers in model biles.  相似文献   

4.
The interaction of phosphatidylcholine bilayers with Triton X-100   总被引:1,自引:0,他引:1  
The interaction of multilamellar phosphatidylcholine vesicles with the non-ionic detergent Triton X-100 has been studied under equilibrium conditions, specially in the sub-lytic range of surfactant concentrations. Equilibrium was achieved in less than 24 h. Estimations of detergent binding to bilayers, using [3H]Triton X-100, indicate that the amphiphile is incorporated even at very low concentrations (below its critical micellar concentration); a dramatic increase in the amount of bound Triton X-100 occurs at detergent concentrations just below those producing membrane solubilization. Solubilization occurs at phospholipid/detergent molar ratios near 0.65 irrespective of lipid concentration. The perturbation produced by the surfactant in the phospholipid bilayer has been studied by differential scanning calorimetry, NMR and Fourier-transform infrared spectroscopy. At low detergent concentration (lipid/detergent molar ratios above 3), a reduction in 2H-NMR quadrupolar splitting occurs, suggesting a decrease in the static order of the acyl chains; the same effect is detected by Fourier-transform infrared spectroscopy in the form of blue shifts of the methylene stretching vibration bands. Simultaneously, the enthalpy variation of the main phospholipid phase transition is decreased by about a third with respect to its value in the pure lipid/water system. For phospholipid/detergent molar ratios between 3 and 1, the decrease in lipid static order does not proceed any further; rather an increase in fluidity is observed, characterized by a marked decrease in the midpoint transition temperature of the gel-to-fluid phospholipid transition. At the same time an isotropic component is apparent in both 31P-NMR and 2H-NMR spectra, and a new low-temperature endotherm is detected in differential scanning calorimetric traces. When phospholipid and Triton X-100 are present at equimolar ratios some bilayer structure persists, as judged from calorimetric observations, but NMR reveals only one-component isotropic signals. At lipid/detergent molar ratios below unity, the NMR lines become narrower, the main (lamellar) calorimetric endotherm tends to vanish and solubilization occurs.  相似文献   

5.
M Ueno  C Tanford  J A Reynolds 《Biochemistry》1984,23(13):3070-3076
The method developed previously for formation of unilamellar vesicles from mixed micelles of egg lecithin and octyl glucoside [Mimms, L. T., Zampighi, G., Nozaki, Y., Tanford, C., & Reynolds, J. A. (1981) Biochemistry 20, 833-840] has been extended to allow for (1) use of nonionic detergents with much lower critical micelle concentrations and (2) variation in the time course of detergent removal. The results demonstrate the importance of kinetic factors, especially in the determination of vesicle size: initially formed vesicles are small, but the size increases slowly thereafter if detergent is not removed too quickly. Vesicle size remains fixed when the molar detergent/lipid ratio falls below about 1/1, and detergent removal becomes increasingly difficult thereafter, presumably because flip-flop of detergent from the inner to the outer leaflet of the bilayer membrane is very slow. Residual detergent (to about 25 mol %) has surprisingly little effect on anion permeability but increases cation permeability to the point where the normal discrimination between anions and cations (in pure lipid vesicles) is lost. Detergent added to initially detergent-free vesicles readily partitions into vesicular membranes (presumably only into the outer leaflet) and has a qualitatively similar effect on permeability. Vesicles produced by this method, regardless of residual detergent level, were found to be predominantly unilamellar: no multilamellar liposomes or other lipid aggregates could be detected within the accuracy of the methods employed.  相似文献   

6.
The present study explores intermediate stages in detergent solubilization of liposomes and Ca2+-ATPase membranes by sodium dodecyl sulfate (SDS) and medium-sized ( approximately C12) nonionic detergents. In all cases detergent partitioning in the membranes precedes cooperative binding and solubilization, which is facilitated by exposure to detergent micelles. Nonionic detergents predominantly interact with the lipid component of Ca2+-ATPase membranes below the CMC (critical micellar concentration), whereas SDS extracts Ca2+-ATPase before solubilization of lipid. At the transition to cooperative binding, n-dodecyl octaethylene glycol monoether (C12E8), Triton X-100, and dodecyldimethylamine oxide induce fusion of small unilamellar liposomes to larger vesicles before solubilization. Solubilization of Ca2+-ATPase membranes is accompanied by membrane fragmentation and aggregation rather than vesicle fusion. Detergents with strongly hydrophilic heads (SDS and beta-D-dodecylmaltoside) only very slowly solubilize liposomal membranes and do not cause liposome fusion. These properties are correlated with a slow bilayer flip-flop. Our data suggest that detergent solubilization proceeds by a combination of 1) a transbilayer attack, following flip-flop of detergent molecules across the lipid bilayer, and 2) extraction of membrane components directly by detergent micelles. The present study should help in the design of efficient solubilization protocols, accomplishing the often delicate balance between preserving functional properties of detergent sensitive membrane proteins and minimizing secondary aggregation and lipid content.  相似文献   

7.
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Re sat—the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.  相似文献   

8.
Sonicated unilamellar lipid vesicles, consisting of egg lecithin, stearylamine, and cholesterol in 7:2:1 molar ratios, promoted the aggregation of tobacco (Nicotiana glutinosa) protoplasts with the aid of mono- or divalent cations.  相似文献   

9.
Direct contact between lipids solubilized by octyl glucoside and Amberlite XAD-2 beads yielded large liposomes (240 nm diameter) with no residual detergent molecules, in less than 10 min. This extemporaneous preparation of liposomes was prepared with a detergent/bead ratio no higher than 0.12 (mumol/mg) and a phosphatidylcholine/phosphatidylserine/cholesterol molar ratio of 1:1:1. The liposomes were mainly unilamellar, as deduced from thin section and freeze-fracture electron micrographs and from measurement of calcein incorporation into the vesicles. The relatively large internal volume of these vesicles (8.9 l/mol lipid) accounts for the high percentage of entrapped material observed. The percentage increased with lipid concentration, but could not be increased above 20% corresponding to 20 mM total lipids.  相似文献   

10.
The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for these detergents [Lichtenberg, D., Robson, R.J., & Dennis, E.A.(1983) Biochim. Biophys. Acta 737, 285-304]. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At that point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations (from 0.25 to 20 mM phospholipid). The results allowed a quantitative determination of RSat, the effective detergent to lipid molar ratios in the saturated liposomes, which were 0.64, 1.3, and 0.30 for Triton X-100, octyl glucoside, and sodium cholate, respectively. The corresponding ratios in the mixed micelles, RSol, were 2.5, 3.8, and 0.9 mol of detergent/mol of phospholipid. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions (0.18, 17, and 2.8 mM, respectively). These transitions were also investigated by 31P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data (K = 3.5, 0.09, and 0.11 mM-1 for Triton X-100, octyl glucoside, and sodium cholate, respectively). It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents.  相似文献   

11.
Spontaneous vesiculation of aqueous lipid dispersions   总被引:3,自引:0,他引:3  
H Hauser  N Gains  H J Eibl  M Müller  E Wehrli 《Biochemistry》1986,25(8):2126-2134
The swelling properties of lipid mixtures consisting of phosphatidylcholine and a charged single-chain detergent have been studied. The work presented here is confined to lipid mixtures forming smectic lamellar phases in H2O. These mixtures exhibit continuous swelling with increasing water content, provided the surface charge density exceeds a threshold value of about 1-2 microC/cm2. In excess H2O, such mixtures undergo spontaneous vesiculation: unilamellar vesicles form spontaneously when excess H2O or salt solutions of moderate ionic strength (I less than 0.2) are added to the dried film of such lipid mixtures. The resulting dispersion of unilamellar vesicles is usually polydisperse. Its average size depends on the detergent/phospholipid mole ratio, decreasing with increasing detergent content. It is shown that in the phase diagram of three-component systems consisting of phosphatidylcholine, a charged single-chain detergent, and excess H2O there is a compositional range, though narrow, within which the small unilamellar vesicle (diameter less than 100 nm) is the thermodynamically most stable structure. This behavior is characteristic of charged, single-chain detergents of 14 and more C atoms. Many pharmacologically active compounds are amphiphilic and surface-active, and as such, they will orient at phospholipid-water interfaces, imparting a net surface charge to neutral lipid surfaces. It is shown that such drugs exhibit detergent-like action. Mixed films of phosphatidylcholine and a pharmacologically active compound behave similarly to phosphatidylcholine-detergent mixtures: they undergo spontaneous vesiculation when excess H2O or salt solutions of moderate ionic strength are added. In this case, the drug itself induces vesiculation; possible pharmacological implications of this finding are discussed.  相似文献   

12.
D Levy  A Gulik  M Seigneuret  J L Rigaud 《Biochemistry》1990,29(40):9480-9488
The processes of liposome solubilization and reconstitution were studied by using n-dodecyl octaethylene glycol monoether (C12E8). The solubilization of large unilamellar liposomes prepared by reverse-phase evaporation was systematically investigated by turbidity, 31P nuclear magnetic resonance, and centrifugation experiments. The solubilization process is well described by the three-stage model previously proposed for other detergents, and our results further demonstrate the validity of some of the postulates related to this model. In stage I, the detergent distributes between the bilayers and the aqueous solution with a partition coefficient of 1.6 mM-1. In stage II, the detergent-saturated liposomes convert into mixed micelles, the conversion being complete by stage III where all the phospholipids are present as mixed micelles. The agreement between the three methods was excellent, and the results allowed quantitative determination of the effective detergent to phospholipid ratios at which the lamellar to micellar transformation begins and is complete, which amounted to 0.66 and 2.2 (mol/mol), respectively. Furthermore, compositional analysis determined from centrifugation experiments directly demonstrate that the properties of detergent-saturated liposomes and mixed micelles remain constant throughout most of stage II: the C12E8 to phospholipid ratios in the pelleted vesicles and in micelles are constant during stage II and similar to the ratios at which stage II was initiated and complete, respectively. On the other hand, bilayer formation upon detergent removal from mixed C12E8-phospholipid micelles by SM2 Bio-Beads is demonstrated to be the symmetrical opposite of bilayer solubilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In order to improve our understanding of membrane protein solubilization by sodium dodecylsulphate, sarcoplasmic reticulum vesicles have been treated with this surfactant at different detergent: protein mole ratios. Effects on Ca2(+)-ATPase activity, membrane protein solubilization, and protein conformation have been independently monitored, and correlations among the various parameters have been observed. The thermal denaturation of sarcoplasmic reticulum proteins in the presence of sodium dodecylsulphate has also been characterized spectroscopically.  相似文献   

14.
Cationic liposomes have been suggested as possible agents for nonviral gene transfer. The interaction of plasmid DNA (pDNA) with dispersions of stable unilamellar cationic liposomes based on the binary lipid system 1,2-dimyristoyl-3-trimethyl-ammonium-propane (DMTAP):1,2-dioleoyl-3-trimethyl-ammonium-propane (DOTAP) has been studied by using isothermal titration calorimetry (ITC), high-precision differential scanning calorimetry (DSC), dynamic light scattering (DLS), and circular dichroism (CD). Systematic calorimetric and DLS exploration of the DMTAP:DOTAP binary system reveals that single-bilayer liposomes are stable at the 4:1 molar ratio, exhibiting the main lipid-phase transition temperature at ~25.3°C, and a total enthalpy change δH = 8.5 ± 0.4 kcal/mol. The interaction of pDNA with unilamellar DMTAP:DOTAP vesicles was investigated by ITC experiments, which clearly distinguished endothermic binding between the phosphate and the ammonium groups from exothermic processes, driven by slow kinetics, corresponding to interliposomal, DNA-triggered aggregation that leads to the formation of large multilamellar liposome/pDNA assemblies. Lipid-added-to-pDNA and pDNA-added-to-lipid experiments have been carried out in order to systematically explore the interaction mechanisms. Complex ITC profiles are revealed, which may be linked to packing rearrangements of the pDNA molecules bound at the outer liposomal surface, possibly due to binding to more than one liposome or due to p-DNA-enhanced heterogeneity in the local lipid concentration. DNA-mediated aggregation effects are detected at high [ammonium]/[phosphate] molar ratios in the case of lipid-added-to-pDNA interactions and at relatively low [phosphate]/[ammonium] molar ratios in the case of pDNA-added-to-lipid.  相似文献   

15.
The effect of increasing concentrations of lipid X (2,3-bis(3-hydroxymyristoyl)-alpha-D-glucosamine 1-phosphate) on the phase behaviour of EPC (egg phosphatidylcholine) and EPE (egg phosphatidylethanolamine) is studied at a pH greater than or equal to 7 where lipid X carries one to two negative charges. Small amounts of lipid X (molar ratio approximately 0.01) induce continuous swelling of EPC and EPE bilayers and consequently the formation of large unilamellar vesicles in excess water. In many respects, the effect of lipid X on EPC and EPE bilayers is similar to that of phosphatidic acid. However, lipid X/EPC mixtures form micelles in excess lipid X whereas mixtures of phosphatidic acid/EPC vesiculate at all ratios. The same is true for lipid X/EPE mixtures. Small unilamellar vesicles of an average diameter of 40 nm form spontaneously upon dispersion of a dry lipid X/EPE film (molar ratio = 10). Unsonicated dispersions of lipid X/EPC (molar ratio = 1) are subjected to pH-jump treatment which involves raising of the pH to 11-12 and subsequent lowering of the pH to between 7.5 and 8.5. Such a treatment has little effect on the vesicle size and size distribution as compared to a control dispersion at pH 8.2. The mean size is determined to be 92 +/- 60 nm. Electron micrographs of freeze-fractured samples of lipid X/EPC (molar ratio = 1) reveal the presence of mainly micelles at pH 12. Upon lowering the pH to neutrality these micelles become unstable and aggregate/fuse rapidly to unilamellar vesicles (average diameter 95 +/- 40 nm). Sonication of equimolar mixtures of lipid X and EPC at pH 7 yields small unilamellar vesicles of a diameter of 20-25 nm as well as mixed micelles of a size between 15 and 17 nm. This behaviour is again different from that of mixed EPC/phosphatidic acid dispersions which form small unilamellar vesicles. The presence of lipid X in such mixtures does not prevent the aggregation/fusion to larger vesicles during freezing of the dispersion. As with pure EPC bilayers, stabilization is, however, achieved in the presence of 10% sucrose. This indicates that the covalently bonded glucosamine group of lipid X cannot substitute water of hydration in neighbouring EPC molecules.  相似文献   

16.
The transmembrane protein bovine rhodopsin was reconstituted with egg phosphatidylcholine (PC) by using a modified detergent dilution technique employing the nonionic detergent octyl-beta-D-glucoside (octyl glucoside). Using this technique, reconstituted membranes having molar phospholipid/protein ratios between 60:1 and 255:1 were prepared. This is in contrast to the results obtained when an octyl glucoside dialysis technique was employed (Jackson, M.L. and Litman, B.J. (1982) Biochemistry 21, 5601-5608). In the latter case, the highest molar phospholipid/protein ratio that could be obtained when reconstituting rhodopsin with egg PC was approximately 50:1. Reconstituted vesicles prepared by the octyl glucoside dilution technique were examined by negative stain and freeze-fracture electron microscopy, and it was found that the vesicles were unilamellar providing the molar PC/protein ratio was below about 200:1, whereas in preparations having ratios higher than this, a significant number of the vesicles were multilamellar. The mean vesicle diameter showed no trend based on the molar PC/protein ratio within the range of 82:1 to 186:1. The mean diameters of the preparations were between 520 and 850 A. Approximately equal numbers of protein particles were observed on the concave and convex fracture faces of the freeze-fracture micrographs of the reconstituted membranes which is indicative of a symmetric distribution of the protein across the bilayer.  相似文献   

17.
Dissociation of the receptor for immunoglobulin E in mild detergents   总被引:7,自引:0,他引:7  
J P Kinet  G Alcaraz  A Leonard  S Wank  H Metzger 《Biochemistry》1985,24(15):4117-4124
We previously showed that, in the absence of phospholipids, exposure of the tetrameric receptor for immunoglobulin E to mild detergents dissociates the intact beta chain and two gamma chains from the alpha chains. Having developed a practical method for assaying the dissociation, we have now explored a variety of different detergents, detergent concentrations, temperatures, times, salts, pHs, and other factors that influence the detergent-induced dissociation. Our findings should be useful for optimizing the stability of the receptor and for future studies on recombination of the subunits. The data suggest the following: (1) The critical perturbant is micellar detergent. (2) Unlike solubilization of membranes, where a molar ratio of micellar detergent:lipid of 2 is adequate, dissociation of the receptor is incomplete even at molar ratios of micellar detergent:receptor of greater than 10(5) and may be limited by a reversible component. (3) Detergents that are best for solubilizing membranes are also best for dissociating the receptors. (4) The latter observation and other data implicate bound lipid as stabilizing the receptor. Our findings may be applicable to the study of interactions between membrane proteins in general.  相似文献   

18.
《Biophysical journal》2021,120(20):4418-4428
It is known that giant vesicles undergo dynamic morphological changes when exposed to a detergent. The solubilization process may take multiple pathways. In this work, we identify lipid vesicle shape dynamics before the solubilization of 1,2-dioleoyl-sn-glycero-3-phosphocholine giant vesicles with Triton X-100 (TR) detergent. The violent lipid vesicle dynamics was observed with laser confocal scanning microscopy and was qualitatively explained via a numerical simulation. A three-dimensional Monte Carlo scheme was constructed that emulated the nonequilibrium conditions at the beginning stages of solubilization, accounting for a gradual addition of TR detergent molecules into the lipid bilayers. We suggest that the main driving factor for morphology change in lipid vesicles is the associative tendency of the TR molecules, which induces spontaneous curvature of the detergent inclusions, an intrinsic consequence of their molecular shape. The majority of the observed lipid vesicle shapes in the experiments were found to correspond very well to the numerically calculated shapes in the phase space of possible solutions. The results give an insight into the early stages of lipid vesicle solubilization by amphiphilic molecules, which is nonequilibrium in nature and very difficult to study.  相似文献   

19.
We examined the partitioning of the nonionic detergent Triton X-100 at subsolubilizing concentrations into bilayers of either egg sphingomyelin (SM), palmitoyl SM, or dipalmitoylphosphatidylcholine. SM is known to require less detergent than phosphatidylcholine to achieve the same extent of solubilization, and for all three phospholipids solubilization is temperature dependent. In addition, the three lipids exhibit a gel-fluid phase transition in the 38-41 degrees C temperature range. Experiments have been performed at Triton X-100 concentrations well below the critical micellar concentration, so that only detergent monomers have to be considered. Lipid/detergent mol ratios were never <10:1, thus ensuring that the solubilization stage was never reached. Isothermal titration calorimetry, DSC, and infrared, fluorescence, and (31)P-NMR spectroscopies were applied in the 5-55 degrees C temperature range. The results show that, irrespective of the chemical nature of the lipid, DeltaG degrees of partitioning remained in the range of -27 kJ/mol lipid in the gel phase and of -30 kJ/mol lipid in the fluid phase. This small difference cannot account for the observed phase-dependent differences in solubilization. Such virtually constant DeltaG degrees occurred as a result of the compensation of enthalpic and entropic components, which varied with both temperature and lipid composition. Consequently, the observed different susceptibilities to solubilization cannot be attributed to differential binding but to further events in the solubilization process, e.g., bilayer saturability by detergent or propensity to form lipid-detergent mixed micelles. The data here shed light on the relatively unexplored early stages of membrane solubilization and open new ways to understand the phenomenon of membrane resistance toward detergent solubilization.  相似文献   

20.
The size dependence of vesicles prepared by dialysis of cholate from phosphatidylcholine (PC) dispersions has been investigated as a function of lipid concentration (at a constant applied lipid: detergent molar ratio of 0.7). Gel filtration of dialyzed samples produced a symmetrical profile shape, although quasielastic laser light scattering analysis of the fractions revealed an asymmetrical range of sizes about the peak for solutions containing elevated lipid concentrations. Vesicle diameters increased by approximately 20 nm for PC concentrations ranging from 10 to a maximum of 45 mg/ml. This was attributed to mixed micelle sizes being proportional to lipid concentration, since the diameters of vesicles produced from dialysis are determined by mixed micelle sizes. Before commencement of dialysis, mixed micelle sizes are proportional to lipid concentration and, although dialysis causes an increase in mixed micelle sizes, the phase ratios attained are larger for solutions containing elevated lipid concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号