首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of external protons on single sodium channel currents recorded from cell-attached patches on guinea pig ventricular myocytes were investigated. Extracellular protons reduce single channel current amplitude in a dose-dependent manner, consistent with a simple rapid channel block model where protons bind to a site within the channel with an apparent pKH of 5.10. The reduction in single channel current amplitude by protons is voltage independent between -70 and -20 mV. Increasing external proton concentration also shifts channel gating parameters to more positive voltages, consistent with previous macroscopic results. Similar voltage shifts are seen in the steady-state inactivation (h infinity) curve, the time constant for macroscopic current inactivation (tau h), and the first latency function describing channel activation. As pHo decreases from 7.4 to 5.5 the midpoint of the h infinity curve shifts from -107.6 +/- 2.6 mV (mean +/- SD, n = 16) to -94.3 +/- 1.9 mV (n = 3, P less than 0.001). These effects on channel gating are consistent with a reduction in negative surface potential due to titration of negative external surface charge. The Gouy-Chapman-Stern surface charge model incorporating specific proton binding provides an excellent fit to the dose-response curve for the shift in the midpoint of the h infinity curve with protons, yielding an estimate for total negative surface charge density of -1e/490 A2 and a pKH for proton binding of 5.16. By reducing external surface Na+ concentration, titration of negative surface charge can also quantitatively account for the reduction in single Na+ channel current amplitude, although we cannot rule out a potential role for channel block. Thus, titration by protons of a single class of negatively charged sites may account for effects on both single channel current amplitude and gating.  相似文献   

2.
Effects of stilbene disulfonates on single KATP channel currents were investigated in inside-out and outside-out membrane patches from guinea pig ventricular myocytes. All drugs tested, 4,4′-diisothiocyanatostilbene, 2,2′-disulfonic acid (DIDS), 4-acetamido0-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS), and 4,4′-diaminostilbene-2,2′-disulfonic acid (DADS), inhibited the KATP channel when they were applied to the intracellular, but not extracellular side of the membrane patch. Inhibitory actions of DIDS and SITS were irreversible, whereas those induced by DNDS and DADS were reversible. KATP channel inhibition was concentration dependent with an order of potency of DIDS>SITS ≈ DNDS > DADS; the Hill coefficient was close to unity for each drug. No change in channel conductance was observed during exposure to DIDS or DNDS; however, channel kinetics was altered. Distribution of the open time within bursts and that between bursts could be described by a single exponential relation in the absence and presence of DIDS or DNDS. The time constant of the open time within bursts was not altered, but that between bursts was decreased by DIDS (from 40.0±8.1 to 29.8±6.7 msec, P< 0.05) and by DNDS (from 43.1±9.3 to 31.9±7.1 msec, P<0.05). Distributions of closed time within bursts were also fitted to a single exponential function both in the absence and presence of drugs, while those of the closed time between bursts were fitted to a single exponential function in the absence of drugs, but a double exponential function was required in the presence of drugs. The rates of onset and development of channel inhibition by DIDS and DNDS appeared to be concentration dependent; a longer time was required to reach a new steady-state of channel activity as drug concentration was decreased. Inhibition by DIDS or DNDS was regulated by intracellular pH; inhibition was greater during acidic conditions. For DIDS (0.1 mm), the open probability (P o) expressed as a fraction of the value before drug application was 42.9±8.3% at pH 7.4 and 8.2±6.6% at pH 6.5 (P<0.01); corresponding values for DNDS (1 mm) were 39.6±17.6 and 8.9 ±5.8%, respectively (P<0.01). From these data, we conclude that stilbene disulfonates block the KATP channel by binding to their target site with one-to-one stoichiometry. Similar to glibenclamide, the binding of stilbene disulfonates may reflect interpolation in an “intermediate lipid compartment” between the cytosolic drug and the site of drug action.  相似文献   

3.
目的:研究心室肌细胞持续性钠电流(INa.P)在缺氧/复氧早期的变化,探讨其在此病理条件下的作用及意义。方法:运用全细胞膜片钳技术记录持续性钠电流,并观察其在缺氧-复氧模型下的变化。结果:①在0.5Hz,1Hz和2Hz的刺激频率下第1个和第8个刺激脉冲引起的INa.P电流密度差值分别为(0.021±0.014)pA/pF,(0.097±0.014)pA/pF和(0.133±0.024)pA/pF(P<0.01);②分别在-150~-80mV,阶跃10mV的钳制膜电位下去极化至-30mV,INa.P逐渐减小;③在缺氧条件下,INa.P电流密度增大,并随缺氧时间延长增大更显著;④在正常、缺氧15min和复氧5min时INa.P密度分别为(0.500±0.125)pA/pF,(1.294±0.321)pA/pF和(0.988±0.189)pA/pF(与对照比较P<0.01)。结论:以上特性提示INa.P在缺氧/复氧过程心律失常的产生及钙超载引起心肌损伤的机制中起重要作用。  相似文献   

4.
The effects of quinidine on single inward rectifier K channels were investigated in cell-attached patches with 4.5 mM pipette potassium concentrations. Under these conditions, the single-channel slope conductance of the predominant conductance level of the inward rectifier channels was 3.9 +/- 0.3 pS at membrane potentials between -75 and -150 mV. Quinidine reversibly decreased the likelihood of channel opening to the main conductance level without reducing the single-channel conductance, and also reduced the probability of channel opening to subconducting levels. Quinidine had no significant effects on the channel open times, and the inhibition of channel opening was only slightly voltage dependent over the range of membrane potentials investigated. Quinidine induced a complete cessation of channel openings for brief periods (up to 2 min), suggesting that quinidine promoted occupancy of a state from which opening was less likely. Occasional long periods (up to an hour) with an absence of channel activity were also observed but quinidine did not appear to promote this behavior. The data suggest that quinidine decreases the ability of the channel to enter both main and subconducting states. By binding to a particular closed conformation of the channel, quinidine could reduce the likelihood of channel opening. The main features of these observations could be accounted for using the three-state kinetic model proposed by Sakmann, B. and G. Trube (1984b. J. Physiol. [Lond.]. 347:659-683.) with quinidine binding to the middle closed state.  相似文献   

5.
Intramembrane charge movement was recorded in guinea pig ventricular myocytes at 19-22 degrees C using the whole-cell patch clamp technique. From a holding potential of -110 mV, the dependence of intramembrane charge moved on test voltage (Q(V)) followed the sum of two Boltzmann components. One component had a transition voltage (V) of -48 mV and a total charge (Qmax) of congruent to 3 nC/microF. The other had a V of -18 mV and a Qmax of 11 nC/microF. Ba2+ currents through Ca channels began to activate at -45 mV and peaked at congruent to -15 mV. Na+ current peaked at -35 to -30 mV. Availability of charge (in pulses from -70 to +10 mV) depended on the voltage of conditioning depolarizations as two Boltzmann terms plus a constant. One term had a V of -88 mV and a Qmax of 2.5 nC/microF; the other had a V of -29 mV and a Qmax of 6.3 nC/microF. From the Q(V) dependence, the voltage dependence of the ionic currents, and the voltage dependence of the availability of charge, the low voltage term of Q(V) and availability was identified as Na gating charge, at a total of 3.5 nC/microF. The remainder, 11 nC/microF, was attributed to Ca channels. After pulses to -40 mV and above, the OFF charge movement had a slow exponentially decaying component. Its time constant had a bell-shaped dependence on OFF voltage peaking at 11 ms near -100 mV. Conditioning depolarizations above -40 mV increased the slow component exponentially with the conditioning duration (tau approximately equal to 480 ms). Its magnitude was reduced as the separation between conditioning and test pulses increased (tau approximately equal to 160 ms). The voltage distribution of the slow component of charge was measured after long (5 s) depolarizations. Its V was -100 mV, a shift of -80 mV from the value in normally polarized cells. This voltage was the same at which the time constant of the slow component peaked. Qmax and the steepness of the voltage distribution were unchanged by depolarization. This indicates that the same molecules that produce the charge movement in normally polarized cells also produce the slow component in depolarized cells. 100 microns D600 increased by 77% the slow charge movement after a 500-ms conditioning pulse. These results demonstrate two classes of charge movement associated with L-type Ca channels, with kinetics and voltage dependence similar to charge 1 and charge 2 of skeletal muscle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Ma JH  Luo AT  Wang WP  Zhang PH 《生理学报》2007,59(2):233-239
应用全细胞和单通道(贴附式)膜片钳技术观察胞外pH值降低对心室肌细胞持续性钠电流(persistent sodium current,ⅠNa.P)的影响,探讨其作用机制。结果显示:全细胞记录模式下,细胞外pH值降低可明显增大ⅠNa.P,且呈H+浓度依赖性增强。当细胞外pH值从对照值的7.4降低为6.5时,ⅠNa.P的电流密度从(0.347±0.067)pAJpF增加到(0.817±0.137)pA/pF(P< 0.01,n=6),而加入还原剂1,4-二硫甙苏糖醇(dithiothreitiol,DTT,1 mmol/L)后可使,ⅠNa.P的电流密度回落到(0.233±0.078)pA/pF (P<0.01 vs pH 6.5,n=6)。单通道记录模式中,当细胞外pH值从对照值的7.4降低为6.5时,持续性钠通道的开放概率和开放时间分别从0.021±0.007和(0.899±0.074)ms增加到0.205±0.023和(1.593±0.158)ms(P<0.叭,n=6),再加入还原剂DTT(1 mmol/L)使开放概率和开放时间分别回落到0.019±0.005和(0.868±0.190)ms(P<0.01 vs pH 6.5,n=6);加入蛋白激酶C(protein kinase C,PKC)抑制剂bisindolylmaleimide(BIM,5μmol/L)可使pH 6.5时增大的,ⅠNa.P明显减小,开放概率和开放时间分别从0.214±0.024和(1.634±0.137)ms回落到0.025±0.006和(0.914±0.070)ms(P<0.01 vs pH 6.5,n=6)。结果表明,细胞外pH值降低可诱发心室肌细胞ⅠNa.P增大,其机制可能与PKC的激活有关。  相似文献   

7.
Using fluorescent Ca2+ indicator fura-2 and whole-cell patch-clamp techniques, we examined the effect of 2-nicotinamidoethyl nitrate (nicorandil) on the intracellular free Ca2+ concentration ([Ca2+]i) and electrical properties in single guinea pig ventricular myocytes. Nicorandil (10 nM approximately 1 mM) reduced the resting level [Ca2+]i monitored as fura-2 fluorescence ratio in a concentration-dependent manner. Dibutyryl guanosine 3':5'-cyclic monophosphate (cyclic GMP), a membrane permeable cyclic GMP analogue, mimicked the nicorandil action. Neither application of caffeine (10 mM) nor deprivation of extracellular Na+ ions could prevent the nicorandil action on [Ca2+]i. In contrast, the nicorandil effect was virtually blocked by sodium orthovanadate (40 microM), a Ca2+ pumping ATPase inhibitor. During electrophysiological experiments, nicorandil shortened action potential durations (205 +/- 80 ms to 153 +/- 76 ms) by increasing a glibenclamide-sensitive outward K+ conductance. However, the drug produced little hyperpolarization (approximately 2 mV) because the resting potential of ventricular myocytes was close to the K+ equilibrium potential. The involvement of voltage-dependent Ca-channel current and Na-Ca exchanger was considered to be minimal under physiological conditions. It is thus concluded that nicorandil decreases basal [Ca2+]i via cyclic GMP-mediated activation of the plasma membrane Ca2+ pump in guinea pig ventricular myocytes.  相似文献   

8.
Platelet-activating factor (PAF) has been implicated as one of the mediators of cardiac anaphylaxis. This phospholipid has been shown to have numerous effects on a variety of tissues, including the heart. Among these effects are alterations in the resting potential and generation of arrhythmias at very low concentrations. This suggests that PAF may modulate the activity of the background, inwardly-rectifying potassium current (IK1). Thus, the effects of PAF on IK1 were examined at the single channel level. Ventricular cells were isolated from adult guinea pig hearts and single channel currents recorded from cell-attached patches. PAF had substantial effects on the single channel currents at sub-nanomolar concentrations (10–11 to 10–10 M). PAF initially caused flickering of the channels, followed by a gradual prolonged depression of channel activity. Since these potassium channels play a major role in determining the resting potential and excitability of the cardiac cell, the effects of PAF on IK1 may play a major role in the deleterious electrophysiological actions of PAF on the heart.Abbreviations IK1 Inwardly-rectifying background potassium current - Lyso-PAF Lyso-platelet-activating factor - PAF Platelet-activating factor  相似文献   

9.
When depolarized from typical resting membrane potentials (V(rest) approximately -90 mV), cardiac sodium (Na) currents are more sensitive to local anesthetics than brain or skeletal muscle Na currents. When expressed in Xenopus oocytes, lidocaine block of hH1 (human cardiac) Na current greatly exceeded that of mu1 (rat skeletal muscle) at membrane potentials near V(rest), whereas hyperpolarization to -140 mV equalized block of the two isoforms. Because the isoform-specific tonic block roughly parallels the drug-free voltage dependence of channel availability, isoform differences in the voltage dependence of fast inactivation could underlie the differences in block. However, after a brief (50 ms) depolarizing pulse, recovery from lidocaine block is similar for the two isoforms despite marked kinetic differences in drug-free recovery, suggesting that differences in fast inactivation cannot entirely explain the isoform difference in lidocaine action. Given the strong coupling between fast inactivation and other gating processes linked to depolarization (activation, slow inactivation), we considered the possibility that isoform differences in lidocaine block are explained by differences in these other gating processes. In whole-cell recordings from HEK-293 cells, the voltage dependence of hH1 current activation was approximately 20 mV more negative than that of mu1. Because activation and closed-state inactivation are positively coupled, these differences in activation were sufficient to shift hH1 availability to more negative membrane potentials. A mutant channel with enhanced closed-state inactivation gating (mu1-R1441C) exhibited increased lidocaine sensitivity, emphasizing the importance of closed-state inactivation in lidocaine action. Moreover, when the depolarization was prolonged to 1 s, recovery from a "slow" inactivated state with intermediate kinetics (I(M)) was fourfold longer in hH1 than in mu1, and recovery from lidocaine block in hH1 was similarly delayed relative to mu1. We propose that gating processes coupled to fast inactivation (activation and slow inactivation) are the key determinants of isoform-specific local anesthetic action.  相似文献   

10.
Calmodulin (CaM) is implicated in regulation of Ca2+ channels as a Ca2+ sensor. The effect of CaM on rundown of L-type Ca2+ channels in inside-out patch form was investigated in guinea pig ventricular myocytes. Ca2+ channel activity disappeared within 1–3 min and did not reappear when the patch was excised and exposed to an artificial intracellular solution. However, application of CaM (0.03, 0.3, 3 µM) + 3 mM ATP to the intracellular solution within 1 min after patch excision resulted in dose-dependent activation of channel activity. Channel activity averaged 11.2%, 94.7%, and 292.9%, respectively, of that in cell-attached mode. Channel activity in inside-out patch mode was induced by CaM + ATP at nanomolar Ca2+ concentrations ([Ca2+]); however, increase to micromolar [Ca2+] rapidly inactivated the channel activity induced, revealing that the effect of CaM on the channel was Ca2+ dependent. At the 2nd, 4th, 6th, 8th, and 10th minutes after patch excision, CaM (0.75 µM) + ATP induced Ca2+ channel activity to 150%, 100%, 96.9%, 29.3%, and 16.6%, respectively, revealing a time-dependent action of CaM on the channel. CaM added with adenosine 5'-(,-imido)triphosphate (AMP-PNP) also induced channel activity, although with much lower potency and shorter duration. Protein kinase inhibitors KN-62, CaM-dependent protein kinase (CaMK)II 281-309, autocamtide-related CaMKII inhibitor peptide, and K252a (each 1–10 µM) did not block the effect of CaM, indicating that the effect of CaM on the Ca2+ channel was phosphorylation independent. Neither CaM nor ATP alone induced Ca2+ channel activity, showing a cooperative effect of CaM and ATP on the Ca2+ channel. These results suggest that CaM is a crucial regulatory factor of Ca2+ channel basal activity. cardiac myocyte; calcium channel; patch clamp  相似文献   

11.
Currents through DPI 201-106 modified single sodium channels have been measured in cell-free inside-out patches from guinea-pig ventricular myocytes. Single-channel conductance and reversal potential of the sodium channel have been calculated at different intracellular sodium concentrations [( Na+]i) from microscopic I-V curves, which were obtained by application of linear voltage ramps. The relation between the reversal potential and [Na+]i could be fitted with a modified Goldman-Hodgkin-Katz equation with a relative permeability for K+ over Na+ ions of 0.054. The zero-current conductance of the Na channel as a function of [Na+]i shows a plateau value at low Na concentrations, and increases in a sigmoidal manner at higher concentrations. It is concluded that the Na channel can carry outward currents and that its conductance depends on [Na+]i.  相似文献   

12.
血管紧张素Ⅱ对缺血心肌细胞钾离子通道的作用   总被引:5,自引:0,他引:5  
Wang WW  Zhu YC  Yao T  Zheng P  Gong QL 《生理学报》2002,54(2):149-153
实验用胶原酶酶解法急性分离豚鼠心室肌细胞,利用全细胞膜片钳的方法记录心室肌细胞的延迟整流钾电流(Ik)、内向整流钾电流(Ik1)和ATP敏感钾电流(IKATP)。采用低氧、无糖、高乳酸和酸中毒综合方式模拟缺血灌流,造成细胞的模拟缺血,并在缺血的基础上继续用含100nmol/L AngⅡ灌流细胞,观察Ang Ⅱ对模拟缺血心室肌细胞钾离子通道的影响。实验结果显示:(1)模拟缺血时,Ik明显减小;Ang Ⅱ能进一步抑制Ik。(2)模拟缺血条件下,Ik1受到抑制,并且以内向电流的抑制为主;Ang Ⅱ可加强对Ik1内向电流的抑制,而对部分外向电流则有增加的作用。(3)模拟缺血使IKATP外向电流略有增加;Ang Ⅱ则明显加强IKATP外向电流,此效应能被优降糖所阻断。  相似文献   

13.
乳酸左氧氟沙星对豚鼠心肌细胞电生理的影响   总被引:1,自引:0,他引:1  
目的了解乳酸左氧氟沙星(LVFX)对豚鼠心室肌细胞电生理的影响.方法经腹腔注射不同剂量的LVFX,记录并分析注药后5~360 min豚鼠Ⅱ导联心电图的QT间期,以及校正的QT间期(QTc).采用全细胞膜片钳技术,记录不同浓度LVFX对体外单个心室肌细胞的延迟整流钾电流(IK)的作用.结果①LVFX给药量为200 mg/kg时,心电图QT间期延长19.38%±3.15%(P<0.05);在50 mg/kg和100 mg/kg等较低剂量时,QT间期延长不明显(P>0.05).②LVFX抑制IK电流,且抑制作用呈现电压依赖性和浓度依赖性.结论LVFX可能通过抑制心肌细胞IK电流引起心脏QT间期延长,临床应谨慎使用.  相似文献   

14.
一氧化氮增加常氧和缺氧豚鼠心室肌细胞持续性钠电流   总被引:7,自引:1,他引:7  
Ma JH  Wang XP  Zhang PH 《生理学报》2004,56(5):603-608
运用全细胞膜片钳记录缺氧条件下豚鼠心室肌持续性钠电流(INa.P)的变化及施加药物对其的影响,以探讨 INa.P 的本质及缺氧增大 INa.P 的机制。结果显示:(1)在常氧条件下,一氧化氮(NO)前体 L- 精氨酸(L-Arg)和供体硝普钠(SNP)浓度依赖性地增大INa.P; (2)INa.P 随缺氧时间延长而增大, 缺氧15 min 后施加 NO 合酶(NOS)抑制剂L- 硝基精氨酸甲酯(L-NAME), 不能使增大的INa.P 明显回复[(1.344 ±0.320) vs (1.301 ±0.317) pA/pF, P>0.05, n=5]; (3)缺氧时含L-NAME 的灌流液可使INa.P 明显减小,与单纯缺氧相比有显著差异[(0.914 ± 0.263), n=5 vs (1.344 ± 0.320) pA/pF, n=6, P<0.05], 但仍比常氧条件下增大[(0.914 ±0.263) vs (0.497 ±0.149) pA/pF, P<0.05, n=5]; (4)还原剂1,4-二硫代苏糖醇(DTT)不但可使L-Arg 及缺氧后施加SNP 增大的 INa.P 回复[(1.449 ± 0.522) vs (0.414 ± 0.067) pA/pF, P<0.01, n = 6 和(0.436 ± 0.141) vs (1.786 ± 0.636) pA/pF,P<0.01, n=5],而且使正常的 INa.P 减小[(0.396 ± 0.057) pA/pF vs (0.442 ± 0.056) pA/pF, P<0.01, n=6]。本实验结果表明缺氧可增大心室肌细胞的INa.P, 其作用机制可能是缺氧时心肌产生的NO 通过氧化细胞膜上钠通道蛋白所致,正常INa.P 的产生  相似文献   

15.
Na+ currents were measured in myelinated frog nerve fibres in the presence of nanomolar concentrations of tetrodotoxin (TTX) or saxitoxin (STX) in the extracellular solution. The Na+ currents declined during a train of depolarizing pulses if the fibre was held at hyperpolarizing potentials between the pulses. At a pulse frequency of 0.8 Hz, the peak Na+ currents were reduced to 70 or 60% of the initial value in 9.3 nM TTX and 3.5 nM STX solutions, respectively. A decline of Na+ currents was also observed in two-pulse experiments. The peak Na+ current during a second test pulse did not depend on the duration (0.2 to 12 ms) of the first pulse. It decreased with increasing interval between the pulses, reached a minimum and increased again. The results are interpreted with a use-dependent blockage of Na+ channels by TTX or STX at negative holding potentials. The effects were described quantitatively, assuming a fast affinity increase of toxin receptors at Na+ channels triggered by Na+ activation followed by slow toxin binding to channels and relaxation of the receptor affinity.  相似文献   

16.
The patch-clamp technique of cell-attached and inside-out configurations was used to study the single potassium channels in isolated guinea pig hepatocytes. The single potassium channels in isolated guinea pig hepatocytes were recorded at different K+ concentrations. A linear single-channel current-voltage relationship was obtained at the voltage range of -80 to -20 mV with slope conductance of 70 ± 6 pS (n = 10). Under symmetrical high K+ concentration of 148 mM in the cell-attached patch membrane, the I-V curve exhibited a mild inward rectification at potentials positive to +20 mV. The values of reversal potential was +5 ± 2 mV (n = 10). When the external potassium concentration ([K+]0) was decreased to 74 mM and 20 mM, the slope conductance was decreased to 48 ± 2 pS (n = 4) and 24 ± 3 pS (n = 3), respectively. The reversal potential was changed by 58 mV for a tenfold change in [K+]0, indicating that this channel was highly selective for K+. Open probabilities (P0) of the channel were 73-93% without apparent voltage dependence. The distributions of open time of the channels were fitted to two exponentials, while those of closed time were fitted to three exponentials, exhibiting no voltage dependence. The success rate of K+ channel activity to be recorded was 28% at room temperature, and there were no increases in the success rate nor in the channel opening probabilities at a temperature of 34-36°C. P0 in inside-out patches was not changed by application of 1 μM Ca2+ nor 1 mM Mg2+ to the internal side of patch membranes. It is concluded that a novel type of the K+ channels in guinea pig hepatocytes had different properties of slope conductance, channel kinetics, and sensitivity to [Ca2+]i, from those in other species. © 1994 Wiley-Liss, Inc.  相似文献   

17.
In the present study, we have demonstrated hysteresis phenomena in the excitability of single, enzymatically dissociated guinea pig ventricular myocytes. Membrane potentials were recorded with patch pipettes in the whole-cell current clamp configuration. Repetitive stimulation with depolarizing current pulses of constant cycle length and duration but varying strength led to predictable excitation (1:l) and non-excitation (1:0) patterns depending on current strength. In addition, transition between patterns depended on the direction of current intensity change and stable hysteresis loops were obtained in stimulus:response pattern vs. current intensity plots in 14 cells. Increase of pulse duration and decrease of stimulation rate contributed to a reduction in hysteresis loop areas. Changes in amplitude and shape of the subthreshold responses during the transitions from one stable pattern to the other, suggested that activity led to an increase in membrane resistance, particularly in the voltage domain between resting potential, and threshold. Therefore, we modelled the dynamic behaviour of the single cells as a function of diastolic membrane resistance, using previously published analytical solutions. Numerical iteration of the analytical model equations closely reproduced the experimental hysteresis loops in both qualitative and quantitative ways. In particular, the effect of stimulation frequency on the model was similar to the experimental findings. The overall study suggests that the excitability pattern of guinea pig ventricular myocytes accounts for hysteresis and bistabilities when current intensity is allowed to fluctuate around threshold levels.  相似文献   

18.
There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode's solution. Although depolarizations from holding potential (Vhp) -40 to 0 mV elicited relatively small inward I(Ca,L) in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of I(Ca,L) was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to -80 mV and test depolarizations were preceded by short prepulses to -40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 microM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic "time-independent" inwardly rectifying K+ current.  相似文献   

19.
目的:研究腺苷对豚鼠心室肌细胞内游离钙浓度([Ca^2+]i)的影响并探讨其可能机制。方法:用激光共聚焦显微镜探测细胞内游离钙浓度,结果用相对荧光强度((FI-FI0)/FI0,%;FI0:对照;FI:给药)表示。结果:①在正常台氏液和无钙台氏液中,腺苷(10,50,100μmol/L)浓度依赖性地降低[Ca^2+];。②含30mmol/L KCl的台氏液(高钾台氏液)能够增加[Ca^2+]i。腺苷(10,50,100μmol/L)能够显著抑制KCl引起的[Ca^2+]i的增加。③预先应用选择性腺苷AI受体拮抗剂DPCPX(1μmol/L),可大部分取消腺苷(100μmol/L)在高钾台氏液中的作用。腺苷(100μmol/L)在高钾台氏液的作用也可被预先应用一氧化氮(No)合酶抑制剂L-NAME(1mmol/L)所部分减弱。④腺苷(100μmol/L)能明显抑制无钙台氏液中由低浓度ryanodine引起的[Ca^2+];增加。⑤当细胞外液钙浓度由1mmol/L增加到10mmol/L而诱发心室肌细胞钙超载时,部分心室肌细胞产生可传播的钙波,腺苷(100μmol/L)可降低钙波发生的频率和持续时间,最终阻断钙波并降低[Ca^2+];。结论:腺苷可通过抑制外钙内流和减少肌浆网内钙释放从而降低[Ca^2+],其减少外钙内流可能是由于腺苷A1受体介导的电压依赖性Ca^2+通道的抑制,NO可能参与这一过程。  相似文献   

20.
In crayfish muscle fibers studied with intracellular microelectrodes the protein-binding agent, picrate (2,4,6-trinitrophenolate; 10(-5)-2 X 10(-4) M) was found to have a specific and dose-dependent inhibitory effect on the chloride conductance activated by bath-applied gamma-aminobutyric acid (GABA). A kinetic analysis showed that picrate did not interfere with GABA binding to its receptor. The blocking action of picrate was not increased by lowering the extracellular Cl- concentration which indicates that picrate is not likely to bind to the ionic selectivity site of the postsynaptic Cl- channel. In fibers first exposed to picrate (1-2 X 10(-4) M) and then, in the continuous presence of this drug, to GABA (5 X 10(-4) M), the latter induced a transient increase in the chloride conductance with an apparent rate constant of decay of about 40 sec. It is tentatively suggested that the site of action of picrate is a positively charged amino acid residue that is exposed through the action of GABA and critically involved in the chemical gating of the postsynaptic chloride channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号