首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein-disulfide isomerase (PDI) has five domains: a, b, b', a' and c, all of which except c have a thioredoxin fold. A single catalytic domain (a or a') is effective in catalyzing oxidation of a reduced protein but not isomerization of disulfides (Darby, N. J., and Creighton, T. E. (1995) Biochemistry 34, 11725-11735). To examine the structural basis for this oxidase and isomerase activity of PDI, shuffled domain mutants were generated using a method that should be generally applicable to multidomain proteins. Domains a and a' along with constructs ab, aa', aba', ab'a' display low disulfide isomerase activity, but all show significant reactivity with mammalian thioredoxin reductase, suggesting that the structure is not seriously compromised. The only domain order that retains significant isomerase activity has the b' domain coupled to the N terminus of the a' domain. This b'a'c has 38% of the isomerase activity of wild-type PDI, equivalent to the activity of full-length PDI with one of the active sites inactivated by mutation (Walker, K. W., Lyles, M. M., and Gilbert, H. F. (1996) Biochemistry 35, 1972-1980). Individual a and a' domains, despite their very low isomerase activities in vitro, support wild-type growth of a pdi1Delta Saccharomyces cerevisiae strain yeast. Thus, most of the PDI structure is dispensable for its essential function in yeast, and high-level isomerase activity appears not required for viability or rapid growth.  相似文献   

2.
3.
N-glycanase from Saccharomyces cerevisiae (Png1) preferentially removes N-glycans from misfolded proteins. The ability of Png1 to distinguish between folded and misfolded glycoproteins is reminiscent of substrate recognition by UDP-glucose glycoprotein glucosyl transferase, an enzyme that possesses this trait. The only known in vivo substrates of Png1 are aberrant glycoproteins that originate in the endoplasmic reticulum, and arrive in the cytoplasm for proteasomal degradation. The substrate specificity of Png1 is admirably suited for this task.  相似文献   

4.
Assembly and degradation of fibronectin-containing extracellular matrices are dynamic processes that are up-regulated during wound healing, embryogenesis, and metastasis. Although several of the early steps leading to fibronectin deposition have been identified, the mechanisms leading to the accumulation of fibronectin in disulfide-stabilized multimers are largely unknown. Disulfide-stabilized fibronectin multimers are thought to arise through intra- or intermolecular disulfide exchange. Several proteins involved in disulfide exchange reactions contain the sequence Cys-X-X-Cys in their active sites, including thioredoxin and protein-disulfide isomerase. The twelfth type I module of fibronectin (I12) contains a Cys-X-X-Cys motif, suggesting that fibronectin may have the intrinsic ability to catalyze disulfide bond rearrangement. Using an established protein refolding assay, we demonstrate here that fibronectin has protein-disulfide isomerase activity and that this activity is localized to the carboxyl-terminal type I module I12. I12 was as active on an equal molar basis as intact fibronectin, indicating that most of the protein-disulfide isomerase activity of fibronectin is localized to I12. Moreover, the protein-disulfide isomerase activity of fibronectin appears to be partially cryptic since limited proteolysis of I10-I12 increased its isomerase activity and dramatically enhanced the rate of RNase refolding. This is the first demonstration that fibronectin contains protein-disulfide isomerase activity and suggests that cross-linking of fibronectin in the extracellular matrix may be catalyzed by a disulfide isomerase activity contained within the fibronectin molecule.  相似文献   

5.
Protein-disulfide isomerase (PDI) catalyzes the formation and isomerization of disulfides during oxidative protein folding. This process can be error-prone in its early stages, and any incorrect disulfides that form must be rearranged to their native configuration. When the second cysteine (CGHC) in the PDI active site is mutated to Ser, the isomerase activity drops by 7-8-fold, and a covalent intermediate with the substrate accumulates. This led to the proposal that the second active site cysteine provides an escape mechanism, preventing PDI from becoming trapped with substrates that isomerize slowly (Walker, K. W., and Gilbert, H. F. (1997) J. Biol. Chem. 272, 8845-8848). Escape also reduces the substrate, and if it is invoked frequently, disulfide isomerization will involve cycles of reduction and reoxidation in preference to intramolecular isomerization of the PDI-bound substrate. Using a gel-shift assay that adds a polyethylene glycol-conjugated maleimide of 5 kDa for each sulfhydryl group, we find that PDI reduction and oxidation are kinetically competent and essential for isomerization. Oxidants inhibit isomerization and oxidize PDI when a redox buffer is not present to maintain the PDI redox state. Reductants also inhibit isomerization as they deplete oxidized PDI. These rapid cycles of PDI oxidation and reduction suggest that PDI catalyzes isomerization by trial and error, reducing disulfides and oxidizing them in a different configuration. Disulfide reduction-reoxidation may set up critical folding intermediates for intramolecular isomerization, or it may serve as the only isomerization mechanism. In the absence of a redox buffer, these steady-state reduction-oxidation cycles can balance the redox state of PDI and support effective catalysis of disulfide isomerization.  相似文献   

6.
Protein-disulfide isomerase (PDI), with domains arranged as abb'xa'c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a', and the minimum redox-regulated cassette is located in b'xa'. The structure of the reduced bb'xa' reveals for the first time that domain a' packs tightly with both domain b' and linker x to form one compact structural module. Oxidation of domain a' releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI.  相似文献   

7.
Protein-disulfide isomerase (PDI) switches tissue factor (TF) from coagulation to signaling by targeting the allosteric Cys186-Cys209 disulfide. Here, we further characterize the interaction of purified PDI with TF. We find that PDI enhances factor VIIa-dependent substrate factor X activation 5-10-fold in the presence of wild-type, oxidized soluble TF but not TF mutants that contain an unpaired Cys186 or Cys209. PDI-accelerated factor Xa generation was blocked by bacitracin but not influenced by inhibition of vicinal thiols, reduction of PDI, changes in redox gradients, or covalent thiol modification of reduced PDI by N-ethylmaleimide or methyl-methanethiosulfonate, which abolished PDI oxidoreductase but not chaperone activity. PDI had no effect on fully active TF on either negatively charged phospholipids or in activating detergent, indicating that PDI selectively acts upon cryptic TF to facilitate ternary complex formation and macromolecular substrate turnover. PDI activation was reduced upon mutation of TF residues in proximity to the macromolecular substrate binding site, consistent with a primary interaction of PDI with TF. PDI enhanced TF coagulant activity on microvesicles shed from cells, suggesting that PDI plays a role as an activating chaperone for circulating cryptic TF.  相似文献   

8.
Protein-disulfide isomerase (PDI) catalyzes the formation of the correct pattern of disulfide bonds in secretory proteins. A low resolution crystal structure of yeast PDI described here reveals large scale conformational changes compared with the initially reported structure, indicating that PDI is a highly flexible molecule with its catalytic domains, a and a', representing two mobile arms connected to a more rigid core composed of the b and b' domains. Limited proteolysis revealed that the linker between the a domain and the core is more susceptible to degradation than that connecting the a' domain to the core. By restricting the two arms with inter-domain disulfide bonds, the molecular flexibility of PDI, especially that of its a domain, was demonstrated to be essential for the enzymatic activity in vitro and in vivo. The crystal structure also featured a PDI dimer, and a propensity to dimerize in solution and in the ER was confirmed by cross-linking experiments and the split green fluorescent protein system. Although sedimentation studies suggested that the self-association of PDI is weak, we hypothesize that PDI exists as an interconvertible mixture of monomers and dimers in the endoplasmic reticulum due to its high abundance in this compartment.  相似文献   

9.
Adaptive strategies in morphology can significantly influence the successful invasion and establishment of non-native species. Since its introduction, the pumpkinseed (Lepomis gibbosus), a sunfish of North American origin, has spread throughout most of Europe, including the Iberian Peninsula. We hypothesized that 12 morphological traits, functionally significant for locomotion, would differ according to geographic origin (native/non-native) and habitat type (fluvial/lacustrine). Using flow-through raceways, we simultaneously reared F1 young-of-the-year pumpkinseed from two native and two non-native populations, produced from adults kept in a common environment. Morphometric measurements were recorded at the beginning and end of the 90-day rearing period. Median-fin size and placement differed significantly between native and non-native populations, whereas paired fin size differed between fluvial and lacustrine populations. Other functionally significant traits, such as body width, also differed between native and non-native populations. Spanish populations were considered to have acquired these adaptive external morphologies through successive generations, following the species’ range expansion through the variable environments of the Iberian Peninsula.  相似文献   

10.
11.
1. Competitive and synergistic interactions directly or indirectly drive community dynamics of herbivorous insects. Novel interactions between non-native and native insects are unpredictable and not fully understood. 2. We used manipulative experiments on mature red spruce trees to test interactions between a non-native phloem feeding insect, the brown spruce longhorn beetle (BSLB), and an outbreaking native defoliator, the spruce budworm. We subjected treatment trees to defoliation by three densities of spruce budworm larvae. Treatment trees were: stressed by (i) girdling (to mimic beetle feeding) or (ii) girdling + BSLB before spruce budworm larvae were introduced on branches in sleeve cages. Budworm larvae then fed on foliage and developed to pupation. We assessed all branches for budworm performance, defoliation, shoot production and shoot growth. 3. Shoot length did not differ in response to stress from girdling or BSLB infestation. Neither stress from girdling, nor interactions with BSLB feeding affected spruce budworm performance or defoliation. Intraspecific impacts on performance and defoliation in relation to budworm density were stronger than the effects of tree stress. 4. Prior infestation of red spruce by BSLB in our experimental set-up did not influence spruce budworm performance. BSLB is a successful invader that has blended into its novel ecological niche because of ecological and phylogenetic similarities with a native congener, Tetropium cinnamopterum. 5. Outbreaks by BSLB will not likely impede or facilitate spruce budworm outbreaks if they co-occur. It would be useful to evaluate the reverse scenario of BSLB success after defoliation stress by spruce budworm.  相似文献   

12.
Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids.  相似文献   

13.
1. The number of natural enemies that should be introduced to control a pest is a controversial subject in biocontrol. A previous semi-mechanistic model parameterised using a laboratory system consisting of two parasitoid wasps, Anisopteromalus calandrae and Heterospilus prosopidis, parasitising a pest beetle, Callosobruchus chinensis, indicated that the introduction of the non-native parasitoid H. prosopidis decreases the level of intraspecific interference between native A. calandrae females. The model also suggested that this decrease was the main factor destabilising the population dynamics of the host–parasitoid system, resulting in chaos. 2. To test this population-level decrease and host density independence in the interference of A. calandrae, we observed individual behaviours to quantify the level of intraspecific interference between two A. calandrae females in the presence or absence of H. prosopidis at two different host densities. 3. When H. prosopidis was present, the number of direct antagonistic interference events between A. calandrae females, sting duration, host feeding events (but not stinging events), and patch residence time were reduced. However, the presence of H. prosopidis decreased the patch residence time and the proportion of hosts parasitised by A. calandrae only when the host density was low. 4. The reduction in intraspecific interference between A. calandrae females by H. prosopidis and its host density independence support the population-level prediction, whereas the observed reduction in host-feeding behaviours in A. calandrae by H. prosopidis was not predicted. Overall pest control by the native parasitoid was unaffected by the non-native parasitoid as host density increased.  相似文献   

14.
Antibodies provide an excellent system to study the folding and assembly of all beta-sheet proteins and to elucidate the hierarchy of intra/inter chain disulfide bonds formation during the folding process of multimeric and multidomain proteins. Here, the folding process of the Fc fragment of the heavy chain of the antibody MAK33 was investigated. The Fc fragment consists of the C(H)3 and C(H)2 domains of the immunoglobulin heavy chain, both containing a single S-S bond. The folding process was investigated both in the absence and presence of the folding catalyst protein-disulfide isomerase (PDI), monitoring the evolution of intermediates by electrospray mass spectrometry. Moreover, the disulfide bonds present at different times in the folding mixture were identified by mass mapping to determine the hierarchy of disulfide bond formation. The analysis of the uncatalyzed folding showed that the species containing one intramolecular disulfide predominated throughout the entire process, whereas the fully oxidized Fc fragment never accumulated in significant amounts. This result suggests the presence of a kinetic trap during the Fc folding, preventing the one-disulfide-containing species (1S2H) to reach the fully oxidized protein (2S). The assignment of disulfide bonds revealed that 1S2H is a homogeneous species characterized by the presence of a single disulfide bond (Cys-130-Cys-188) belonging to the C(H)3 domain. When the folding experiments were carried out in the presence of PDI, the completely oxidized species accumulated and predominated at later stages of the process. This species contained the two native S-S bonds of the Fc protein. Our results indicate that the two domains of the Fc fragment fold independently, with a precise hierarchy of disulfide formation in which the disulfide bond, especially, of the C(H)2 domain requires catalysis by PDI.  相似文献   

15.
Invasions of non-native species are modifying global biodiversity but the ecological mechanisms underlying invasion processes are still not well understood. A degree of niche separation of non-native and sympatric native species can possibly explain the success of novel species in their new environment. In this study, we quantified experimentally and in situ the environmental niche space of caridean shrimps (native Crangon crangon and Palaemon adspersus, non-native Palaemon elegans) inhabiting the northern Baltic Sea. Field studies showed that the non-native P. elegans had wider geographical range compared to native species although the level of habitat specialization was similar in both Palaemon species. There were clear differences in shrimp habitat occupancy with P. elegans inhabiting lower salinity areas and more eutrophicated habitats compared to the native species. Consequently, the non-native shrimp has occupied large areas of the northern Baltic Sea that were previously devoid of the native shrimps. Experiments demonstrated that the non-native shrimp had higher affinity to vegetated substrates compared to native species. The study suggests that the abilities of the non-native shrimp to thrive in more stressful habitats (lower salinity, higher eutrophication), that are sub-optimal for native shrimps, plausibly explain the invasion success of P. elegans.  相似文献   

16.
Abdallah  Mohamad  Douthe  Cyril  Flexas  Jaume 《Biological invasions》2022,24(8):2597-2612
Biological Invasions - Islands tend to be more prone to plant invasions than mainland regions, with the Mediterranean ones not being an exception. So far, a large number of studies on comparing...  相似文献   

17.
Oxidative protein folding in the endoplasmic reticulum is supported by efficient electron relays driven by enzymatic reactions centering on the ERO1-protein-disulfide isomerase (PDI) pathway. A controlled in vitro oxygen consumption assay was carried out to analyze the ERO1-PDI reaction. The results showed the pH-dependent oxidation of PDI by ERO1α. Among several possible disulfide bonds regulating ERO1α activity, Cys(94)-Cys(131) and Cys(99)-Cys(104) disulfide bonds are dominant regulators by excluding the involvement of the Cys(85)-Cys(391) disulfide in the regulation. The fine-tuned species specificity of the ERO1-PDI pathway was demonstrated by functional in vitro complementation assays using yeast and mammalian oxidoreductases. Finally, the results provide experimental evidence for the intramolecular electron transfer from the a domain to the a' domain within PDI during its oxidation by ERO1α.  相似文献   

18.
In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b'-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a'-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis.  相似文献   

19.
Little is known about the potential for coexistence between native and non-native plants after large-scale biological invasions. Using the example of native perennial bunchgrasses and non-native annual grasses in California grasslands, we sought to determine the effects of interference from non-native grasses on the different life stages of the native perennial bunchgrass Nassella pulchra. Further, we asked whether N. pulchra interferes with non-native annual grasses, and whether competition for water is an important component of these interspecific interactions in this water-limited system. In a series of field and greenhouse experiments employing neighbor removals and additions of water, we found that seedling recruitment of N. pulchra was strongly seed-limited. In both field and greenhouse, natural recruitment of N. pulchra seedlings from grassland soil was extremely low. In field plots where we added seeds, addition of water to field plots increased density of N. pulchra seedlings by 88% and increased total aboveground N. pulchra seedling biomass by almost 90%, suggesting that water was the primary limiting resource. In the greenhouse, simulated drought early in the growing season had a greater negative effect on the biomass of annual seedlings than on the seedlings of N. pulchra. In the field, presence of annuals reduced growth and seed production of all sizes of N. pulchra, and these effects did not decrease as N. pulchra individuals increased in size. These negative effects appeared to be due to competition for water, because N. pulchra plants showed less negative pre-dawn leaf water potentials when annual neighbors were removed. Also, simply adding water caused the same increases in aboveground biomass and seed production of N. pulchra plants as removing all annual neighbors. We found no evidence that established N. pulchra plants were able to suppress non-native annual grasses. Removing large N. pulchra individuals did not affect peak biomass per unit area of annuals. We conclude that effects of interference from non native annuals are important through all life stages of the native perennial N. pulchra. Our results suggest that persistence of native bunchgrasses may be enhanced by greater mortality of annual than perennial seedlings during drought, and possibly by reduced competition for water in wet years because of increased resource availability. Received: 12 November 1998 / Accepted: 4 August 1999  相似文献   

20.
We previously reported that the reductive activities of yeast protein-disulfide isomerase (PDI) family proteins did not completely explain their contribution to the viability of Saccharomyces cerevisiae (Kimura, T., Hosoda, Y., Kitamura, Y., Nakamura, H., Horibe, T., and Kikuchi, M. (2004) Biochem. Biophys. Res. Commun. 320, 359-365). In this study, we examined oxidative refolding activities and found that Mpd1p, Mpd2, and Eug1p exhibit activities of 13.8, 16.0, and 2.16%, respectively, compared with Pdi1p and that activity for Eps1p is undetectable. In analyses of interactions between yeast PDI proteins and endoplasmic reticulum molecular chaperones, we found that Mpd1p alone does not have chaperone activity but that it interacts with and inhibits the chaperone activity of Cne1p, a homologue of mammalian calnexin, and that Cne1p increases the reductive activity of Mpd1p. These results suggest that the interface between Mpd1p and Cne1p is near the peptide-binding site of Cne1p. In addition, Eps1p interacts with Pdi1p, Eug1p, Mpd1p, and Kar2p with dissociation constants (KD) in the range of 10(-7) to 10(-6). Interestingly, co-chaperone activities were completely suppressed in Eps1p-Pdi1p and Eps1p-Mpd1p complexes, although only Eps1p and Pdi1p have chaperone activity. The in vivo consequences of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号