首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacterial chitosanases share weak amino acid sequence similarities at certain regions of each enzyme. These regions have been assumed to be important for catalytic activities of the enzyme. To verify this assumption, the functional importance of the conserved region in a novel thermostable chitosanase (TCH-2) from Bacillus coagulans CK108 was investigated. Each of the conserved amino acid residues (Leu64, Glu80, Glu94, Asp98, and Gly108) was changed to aspartate and glutamine or asparagine and glutamate by site-directed mutagenesis, respectively. Kinetic parameters for colloidal chitosan hydrolysis were determined with wild-type and 10 mutant chitosanases. The Leu64 Arg and Leu64 Gln mutations were essentially inactive and kinetic parameters such as V max and k cat were approximately 1/107 of those of the wild-type enzyme. The Asp98 Asn mutation did not affect the K m value significantly, but decreased k cat to 15% of that of wild-type chitosanase. On the other hand, the Asp98 srarr; Glu mutation affected neither K m nor k cat. The observation that approximately 15% of activity remained after the substitution of Asp98 by Asn indicated that the carboxyl side chain of Asp98 is not absolutely required for catalytic activity. These results indicate that the Leu64 residue is directly involved in the catalytic activity of TCH-2.  相似文献   

2.
We previously discovered that the budding yeast Saccharomyces cerevisiae Sigma1278b has the MPR1 gene that confers resistance to the proline analogue azetidine-2-carboxylate (AZC). The MPR1-encoded protein (Mpr1) is an N-acetyltransferase that detoxifies AZC and is a novel member of the GCN5-related N-acetyltransferase (GNAT) superfamily. Mpr1 can reduce intracellular oxidation levels and protect yeast cells from oxidative stress, heat shock, freezing, or ethanol treatment. Here, we analyzed the amino acid residues in Mpr1 involved in substrate binding and catalysis by site-directed mutagenesis. The mutated genes were expressed in Escherichia coli, and the recombinant Strep-tagged fusion proteins were analyzed in terms of AZC resistance and acetyltransferase activity. The replacement of Arg145, which is conserved in the GNAT superfamily, by Ala, Asp, Glu, Gly, or Trp led to a growth defect of transformants grown in the presence of AZC. Kinetic studies demonstrated that these mutations caused a large reduction in the affinity for AZC and acetyl-CoA, suggesting that Arg145 interacts with both substrates. Among seven conserved Tyr residues, one of which may be a catalytic residue in the GNAT superfamily, Tyr166Ala- showed no detectable activity and Tyr166Phe-Mpr1, a remarkable decrease of the k(cat)/K(m) value. This result suggests that Tyr166 is critical for the catalysis.  相似文献   

3.
In order to identify amino acids directly involved in progesterone binding to rabbit uteroglobin we have mutated Phe 6, Tyr 21 and Thr 60 by site-directed mutagenesis of the uteroglobin cDNA. These residues have been postulated previously to participate in progesterone binding. High-level expression of the mutated uteroglobin cDNAs in Escherichia coli yields recombinant protein mutants that, like natural uteroglobin, form stable dimers, suggesting that the tertiary structure of the protein has not been altered. Substitution of Phe 6 by Ser or Ala does not change the progesterone binding characteristics. In contrast, replacement of Tyr 21 by Phe or Ala, drastically decreases progesterone binding. In addition, replacement of Thr 60 by Ala reduces the affinity for progesterone by a factor of three. These data suggest a direct interaction of progesterone with these two amino acids and support the idea of direct hydrogen bonding of the carbonyl (C3 and C20) of progesterone with the hydroxyl groups of Tyr 21 and Thr 60, respectively.  相似文献   

4.
A lipase from Pseudomonas sp. MIS38 (PML) is a member of the lipase family I.3. We analyzed the roles of the five histidine residues (His(30), His(274), His(291), His(313), and His(365)) and five acidic amino acid residues (Glu(253), Asp(255), Asp(262), Asp(275), and Asp(290)), which are fully conserved in the amino acid sequences of family I.3 lipases, by site-directed mutagenesis. We showed that the mutation of His(313) or Asp(255) to Ala almost fully inactivated the enzyme, whereas the mutations of other residues to Ala did not seriously affect the enzymatic activity. Measurement of the far- and near-UV circular dichroism spectra suggests that inactivation by the mutation of His(313) or Asp(255) is not due to marked changes in the tertiary structure. We propose that His(313) and Asp(255), together with Ser(207), form a catalytic triad in PML.  相似文献   

5.
Escherichia coli esterase (EcE) is a member of the hormone-sensitive lipase family. We have analyzed the roles of the conserved residues in this enzyme (His103, Glu128, Gly163, Asp164, Ser165, Gly167, Asp262, Asp266 and His292) by site-directed mutagenesis. Among them, Gly163, Asp164, Ser165, and Gly167 are the components of a G-D/E-S-A-G motif. We showed that Ser165, Asp262, and His292 are the active-site residues of the enzyme. We also showed that none of the other residues, except for Asp164, is critical for the enzymatic activity. The mutation of Asp164 to Ala dramatically reduced the catalytic efficiency of the enzyme by the factor of 10(4) without seriously affecting the substrate binding. This residue is probably structurally important to make the conformation of the active-site functional.  相似文献   

6.
The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing the side chain peptide bond in beta-lactam antibiotics. Data base searches revealed that the enzyme contains an active site serine consensus sequence Gly-X-Ser-Tyr-X-Gly that is also found in X-prolyl dipeptidyl aminopeptidase. The serine hydrolase inhibitor p-nitrophenyl-p'-guanidino-benzoate appeared to be an active site titrant and was used to label the alpha-amino acid ester hydrolase. Electrospray mass spectrometry and tandem mass spectrometry analysis of peptides from a CNBr digest of the labeled protein showed that Ser(205), situated in the consensus sequence, becomes covalently modified by reaction with the inhibitor. Extended sequence analysis showed alignment of this Ser(205) with the catalytic nucleophile of some alpha/beta-hydrolase fold enzymes, which posses a catalytic triad composed of a nucleophile, an acid, and a base. Based on the alignments, 10 amino acids were selected for site-directed mutagenesis (Arg(85), Asp(86), Tyr(143), Ser(156), Ser(205), Tyr(206), Asp(338), His(370), Asp(509), and His(610)). Mutation of Ser(205), Asp(338,) or His(370) to an alanine almost fully inactivated the enzyme, whereas mutation of the other residues did not seriously affect the enzyme activity. Circular dichroism measurements showed that the inactivation was not caused by drastic changes in the tertiary structure. Therefore, we conclude that the catalytic domain of the alpha-amino acid ester hydrolase has an alpha/beta-hydrolase fold structure with a catalytic triad of Ser(205), Asp(338), and His(370). This distinguishes the alpha-amino acid ester hydrolase from the Ntn-hydrolase family of beta-lactam antibiotic acylases.  相似文献   

7.
Pepstatin-insensitive carboxyl proteinases from Pseudomonas sp. (PCP) and Xanthomonas sp. (XCP) have no conserved catalytic residue sequences, -Asp*-Thr-Gly- (Asp is the catalytic residue) for aspartic proteinases. To identify the catalytic residues of PCP and XCP, we selected presumed catalytic residues based on their high sequence similarity, assuming that such significant sites as catalytic residues will be generally conserved. Several Ala mutants of Asp or Glu residues were constructed and analyzed. The D170A, E222A, and D328A mutants for PCP and XD79A, XD169A, and XD348A mutants for XCP were not converted to mature protein after activation, and no catalytic activity could be detected in these mutants. The specificity constants toward chromogenic substrate of the other PCP and XCP mutants, except for the D84A mutant of PCP, were similar to that of wild-type PCP or XCP. Coupled with the result of chemical modification (Ito, M., Narutaki, S., Uchida, K., and Oda, K. (1999) J. Biochem. (Tokyo) 125, 210-216), a pair of Asp residues (170 and 328) for PCP and a pair of Asp residues (169 and 348) for XCP were elucidated to be their catalytic residues, respectively. The Glu(222) residue in PCP or Asp(79) residue in XCP was excluded from the candidates as catalytic residues, since the corresponding mutant retained its original activity.  相似文献   

8.
Lachrymatory factor synthase (LFS), an enzyme essential for the synthesis of the onion lachrymatory factor (propanethial S-oxide), was identified in 2002. This was the first reported enzyme involved in the production of thioaldehyde S-oxides via an intra-molecular H(+) substitution reaction, and we therefore attempted to identify the catalytic amino acid residues of LFS as the first step in elucidating the unique catalytic reaction mechanism of this enzyme. A comparison of the LFS cDNA sequences among lachrymatory Allium plants, a deletion analysis and site-directed mutagenesis enabled us to identify two amino acids (Arg71 and Glu88) that were indispensable to the LFS activity. Homology modeling was performed for LFS/23-169 on the basis of the template structure of a pyrabactin resistance 1-like protein (PYL) which had been selected from a BLASTP search on SWISS-MODEL against LFS/23-169. We identified in the modeled structure of LFS a pocket corresponding to the ligand-binding site in PYL, and Arg71 and Glu88 were located in this pocket.  相似文献   

9.
Gentisate 1,2-dioxygenase (GDO, EC 1.13.11.4) is a ring cleavage enzyme that utilizes gentisate as a substrate yielding maleylpyruvate as the ring fission product. Mutant GDOs were generated by both random mutagenesis and site-directed mutagenesis of the gene cloned from Pseudomonas alcaligenes NCIB 9867. Alignment of known GDO sequences indicated the presence of a conserved central core region. Mutations generated within this central core resulted in the complete loss of enzyme activity whereas mutations in the flanking regions yielded GDOs with enzyme activities that were reduced by up to 78%. Site-directed mutagenesis was also performed on a pair of highly conserved HRH and HXH motifs found within this core region. Conversion of these His residues to Asp resulted in the complete loss of catalytic activity. Mutagenesis within the core region could have affected quaternary structure formation as well as cofactor binding. A mutant enzyme with increased catalytic activities was also characterized.  相似文献   

10.
【目的】提高N-酰基高丝氨酸内酯酶(N-acylhomoserine lactonase,AiiA)酶活及温度稳定性。【方法】本研究基于AiiA同源蛋白的三维结构对AiiA进行定点突变,分析野生型AiiA及其突变蛋白酶活和温度稳定性。【结果】野生型AiiA较不稳定,在45℃下温浴30 min,或4℃储存5 d后均失去降解N-酰基高丝氨酸内酯(N-acylhomoserine lactone,AHL)的活性。但是突变AiiA蛋白(N65K,T195R和A206E)的酶活力较野生型AiiA均提高了20%以上,且4℃储存时间延长到7 d。此外,突变株N65K比野生型AiiA对高温具有更强的耐受性,在45℃温浴后剩余酶活力达到45%以上,55℃温浴30 min后仍保留5.0%的酶活力。【结论】通过定点突变改造AiiA蛋白结构,提升了AiiA蛋白的酶活和温度稳定性。  相似文献   

11.
The role of amino acid residues in the enzymatic activity of carboxylesterase from Arthrobacter globiformis was analyzed by diisopropyl fluorophosphate (DFP) labeling and site-directed mutagenesis. The electrospray ionization mass spectrometric (ESI-MS) analysis of the esterase, covalently labeled by DFP, showed stoichiometric incorporation of the inhibitor into the enzyme. The further comparison of endopeptidase-digested fragments between native and DFP-labeled esterase by fast atom bombardment mass spectrometric (FAB-MS) analysis as well as site-directed mutagenesis indicated that Ser59 in the consensus sequence Ser-X-X-Lys, which is conserved exclusively in penicillin-binding proteins and some esterases, served as a catalytic nucleophile. In addition, the results obtained from analysis of the mutants at position 62 suggested the importance of the basic amino acid side chain at this position, and suggested the significance of this residue acting directly as a general base rather than its involvement in the maintenance of the optimum hydrogen-bonding network at the active site.  相似文献   

12.
The functional significance of amino acid residues Lys-265, Asp-270, Lys-277, Asp-288, Asp-347, Glu-349, and Arg-351 of Bacillus kaustophilus leucine aminopeptidase was explored by site-directed mutagenesis. Variants with an apparent molecular mass of approximately 54 kDa were overexpressed in Escherichia coli and purified to homogeneity by nickel-chelate chromatography. The purified mutant enzymes had no LAP activity, implying that these residues are important for the catalytic reaction of the enzyme.  相似文献   

13.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate, and carbon dioxide, and uses Mn2+ as the activating metal ion. The enzyme is a monomer and presents 68% identity with Escherichia coli PEP carboxykinase. Comparison with the crystalline structure of homologous E. coli PEP carboxykinase [Tari, L. W., Matte, A., Goldie, H., and Delbaere, L. T. J. (1997). Nature Struct. Biol. 4, 990–994] suggests that His225, Asp262, Asp263, and Thr249 are located in the active site of the protein, interacting with manganese ions. In this work, these residues were individually changed to Gln (His225) or Asn. The mutated enzymes present 3–6 orders of magnitude lower values of V max/K m, indicating high catalytic relevance for these residues. The His225Gln mutant showed increased K m values for Mn2+ and PEP as compared with wild-type enzyme, suggesting a role of His225 in Mn2+ and PEP binding. From 1.5–1.6 Kcal/mol lower affinity for the 3(2)-O-(N-methylantraniloyl) derivative of adenosine diphosphate was observed for the His225Gln and Asp263Asn mutant A. succiniciproducens PEP carboxykinases, implying a role of His225 and Asp263 in nucleotide binding.  相似文献   

14.
Calicivirus proteases cleave the viral precursor polyprotein encoded by open reading frame 1 (ORF1) into multiple intermediate and mature proteins. These proteases have conserved histidine (His), glutamic acid (Glu) or aspartic acid (Asp), and cysteine (Cys) residues that are thought to act as a catalytic triad (i.e. general base, acid and nucleophile, respectively). However, is the triad critical for processing the polyprotein? In the present study, we examined these amino acids in viruses representing the four major genera of Caliciviridae: Norwalk virus (NoV), Rabbit hemorrhagic disease virus (RHDV), Sapporo virus (SaV) and Feline calicivirus (FCV). Using single amino‐acid substitutions, we found that an acidic amino acid (Glu or Asp), as well as the His and Cys in the putative catalytic triad, cannot be replaced by Ala for normal processing activity of the ORF1 polyprotein in vitro. Similarly, normal activity is not retained if the nucleophile Cys is replaced with Ser. These results showed the calicivirus protease is a Cys protease and the catalytic triad formation is important for protease activity. Our study is the first to directly compare the proteases of the four representative calicivirus genera. Interestingly, we found that RHDV and SaV proteases critically need the acidic residues during catalysis, whereas proteolytic cleavage occurs normally at several cleavage sites in the ORF1 polyprotein without a functional acid residue in the NoV and FCV proteases. Thus, the substrate recognition mechanism may be different between the SaV and RHDV proteases and the NoV and FCV proteases.  相似文献   

15.
Sun Y  Yang H  Wang W 《Biotechnology letters》2011,33(10):2049-2055
Site-directed mutagenesis was applied to enhance the thermostability and enzymatic activity of cholesterol oxidase (ChOx) isolated from Brevibacterium sp. Three amino acid residues (Q153E, F128L, and S143H) located near the FAD-binding site of the enzyme were substituted based on structural analysis. The specific activity of the two-sites mutant Q153E/F128L increased by 11.6% and the relative activity increased by 47% when grown for 2 h at 50°C. This mutant is a potential industrial strain for producing ChOx.  相似文献   

16.
We previously found a very large NAD-dependent glutamate dehydrogenase with approximately 170?kDa subunit from Janthinobacterium lividum (Jl-GDH) and predicted that GDH reaction occurred in the central domain of the subunit. To gain further insights into the role of the central domain, several single point mutations were introduced. The enzyme activity was completely lost in all single mutants of R784A, K810A, K820A, D885A, and S1142A. Because, in sequence alignment analysis, these residues corresponded to the residues responsible for glutamate binding in well-known small GDH with approximately 50?kDa subunit, very large GDH and well-known small GDH may share the same catalytic mechanism. In addition, we demonstrated that C1141, one of the three cysteine residues in the central domain, was responsible for the inhibition of enzyme activity by HgCl2, and HgCl2 functioned as an activating compound for a C1141T mutant. At low concentrations, moreover, HgCl2 was found to function as an activating compound for a wild-type Jl-GDH. This suggests that the mechanism for the activation is entirely different from that for the inhibition.  相似文献   

17.
Site-directed mutagenesis of HLA-A2.1 has been used to identify the amino acid substitutions in HLA-A2.3 that are responsible for the lack of recognition of the latter molecule by the HLA-A2/A28 specific antibody, CR11-351, and by HLA-A2.1 specific CTL. Three genes were constructed that encoded HLA-A2 derivatives containing one of the amino acids known to occur in HLA-A2.3: Thr for Ala149, Glu for Val152, and Trp for Leu156. Three additional genes were constructed that encoded the different possible combinations of two amino acid substitutions at these residues. Finally, a gene encoding all three substitutions and equivalent to HLA-A2.3 was constructed. These genes were transfected into the class I negative, human cell line Hmy2.C1R. Analysis of this panel of cells revealed that recognition by the antibody CR11-351 was completely lost when Thr was substituted for Ala149, whereas substitutions at amino acids 152 and 156, either singly or in combination, had no effect on the binding of this antibody. The epitopes recognized by the allogeneic and xenogeneic HLA-A2.1 specific CTL clones used in this study were all affected by either one or two amino acid substitutions. Of those epitopes sensitive to single amino acid changes, none were affected by the substitution of Thr for Ala149, whereas all of them were affected by at least one of the substitutions of Glu for Val 152 or Trp for Leu156. Overall, amino acid residue 152 exerted a stronger effect on the epitopes recognized by HLA-A2.1 specific CTL than did residue 156. Of those epitopes affected only by multiple amino acid substitutions, double substitutions at residues 149 and 152 or at 152 and 156 resulted in a loss of recognition, whereas a mutant with substitutions at residues 149 and 156 was recognized normally. This reemphasizes the importance of residue 152 and indicates that residue 149 can affect epitope formation in conjunction with another amino acid substitution. These results are discussed in the context of current models for the recognition of alloantigens and in light of the recently published three-dimensional structure of the HLA-A2.1 molecule.  相似文献   

18.
19.
In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture supernatants, i.e. a specific activity greater than 2000 mumol/min mg of protein at 30 degrees C and pH 8, a KmATP of 0.6 mM and a Kd for its activator, CaM, of 0.2 nM. Proteolysis with trypsin in the presence of CaM converted the recombinant protein to a 43 kd protein with no loss of activity; the latter corresponds to the secreted form of B.pertussis adenylate cyclase. Site-directed mutagenesis of residue Trp-242 in the recombinant protein yielded mutants expressing full catalytic activity but having altered affinity for CaM. Thus, substitution of an aspartic acid residue for Trp-242 reduced the affinity of adenylate cyclase for CaM greater than 1000-fold. Substitution of a Gln residue for Lys-58 or Lys-65 yielded mutants with a drastically reduced catalytic activity (approximately 0.1% of that of wild-type protein) but with little alteration of CaM-binding. These results substantiated, at the molecular level, our previous genetic and biochemical studies according to which the N-terminal tryptic fragment of secreted B.pertussis adenylate cyclase (residues 1-235/237) harbours the catalytic site, whereas the C-terminal tryptic fragment (residues 235/237-399) corresponds to the main CaM-binding domain of the enzyme.  相似文献   

20.
The roles of six conserved active carboxylic acids in the catalytic mechanism of Aspergillus saitoi 1,2-alpha-d-mannosidase were studied by site-directed mutagenesis and kinetic analyses. We estimate that Glu-124 is a catalytic residue based on the drastic decrease of kcat values of the E124Q and E124D mutant enzyme. Glu-124 may work as an acid catalyst, since the pH dependence of its mutants affected the basic limb. D269N and E411Q were catalytically inactive, while D269E and E411D showed considerable activity. This indicated that the negative charges at these points are essential for the enzymatic activity and that none of these residues can be a base catalyst in the normal sense. Km values of E273D, E414D, and E474D mutants were greatly increased to 17-31-fold wild type enzyme, and the kcat values were decreased, suggesting that each of them is a binding site of the substrate. Ca2+, essential for the mammalian and yeast enzymes, is not required for the enzymatic activity of A. saitoi 1,2-alpha-d-mannosidase. EDTA inhibits the Ca2+-free 1,2-alpha-d-mannosidase as a competitive inhibitor, not as a chelator. We deduce that the Glu-124 residue of A. saitoi 1,2-alpha-d-mannosidase is directly involved in the catalytic mechanism as an acid catalyst, whereas no usual catalytic base is directly involved. Ca2+ is not essential for the activity. The catalytic mechanism of 1,2-alpha-d-mannosidase may deviate from that typical glycosyl hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号