首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to formulate a new delivery system for ecological pesticides by the incorporation of Artemisia arborescens L essential oil into solid lipid nanoparticles (SLN). Two different SLN formulations were prepared following the high-pressure homogenization technique using Compritol 888 ATO as lipid and Poloxamer 188 or Miranol Ultra C32 as surfactants. The SLN formulation particle size was determined using Photon correlation spectroscopy (PCS) and laser diffraction analysis (LD). The change of particle charge was studied by zeta potential (ZP) measurements, while the melting and recrystallization behavior was studied using differential scanning calorimetry (DSC). In vitro release studies of the essential oil were performed at 35°C. Data showed a high physical stability for both formulations at various storage temperatures during 2 months of investigation. In particular, average diameter of Artemisia arborescens L essential oil-loaded SLN did not vary during storage and increased slightly after spraying the SLN dispersions. In vitro release experiments showed that SLN were able to reduce the rapid evaporation of essential oil if compared with the reference emulsions. Therefore, obtained results showed that the studied SLN formulations are suitable carriers in agriculture. Published: January 3, 2006  相似文献   

2.
Glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were investigated as potential oral drug delivery systems to enhance the bioavailability of the water-insoluble model drug simvastatin. The simvastatin-loaded cubic nanoparticles were prepared through fragmentation of the GMO/poloxamer 407 bulk cubic-phase gel using high-pressure homogenization. The internal structure of the cubic nanoparticles was identified by cryo-transmission electron microscopy. The mean diameter of the cubic nanoparticles varied within the range of 100–150 nm, and both GMO/poloxamer 407 ratio and theoretical drug loading had no significant effect on particle size and distribution. Almost complete entrapment with efficiency over 98% was achieved due to the high affinity of simvastatin to the hydrophobic regions of the cubic phase. Release of simvastatin from the cubic nanoparticles was limited both in 0.1 M hydrochloride solution containing 0.2% sodium lauryl sulfate and fasted-state simulated intestinal fluid with a total release of <3.0% at 10 h. Pharmacokinetic profiles in beagle dogs showed sustained plasma levels of simvastatin for cubic nanoparticles over 12 h. The relative oral bioavailability of simvastatin cubic nanoparticles calculated on the basis of area under the curve was 241% compared to simvastatin crystal powder. The enhancement of simvastatin bioavailability was possibly attributable to facilitated absorption by lipids in the formulation rather than improved release.  相似文献   

3.
The purpose of this research was to study the effect of the lipid matrix on the entrapment of olanzapine (OL). OL-loaded solid lipid nanoparticles (SLNs) were prepared using lipids like glyceryl monostearate (GMS), Precirol ATO 5 (PRE), glyceryl tristearate (GTS), and Witepsol E85 (WE 85)--and poloxamer 407 and hydrogenated soya phosphatidylcholine as stabilizers--using a hot melt emulsification high-pressure homogenization technique, and then characterized by particle size analysis, zeta potential, differential scanning calorimetry (DSC), and powder X-ray diffraction (pXRD). Homogenization at 10,000 psi for 3 cycles resulted in the formation of SLNs with a mean particle size of approximately 190 nm for the 4 lipids investigated. The highest partition coefficient for OL between the melted lipid and pH 7.4 phosphate buffer (pH 7.4 PB) was obtained with GTS. The entrapment efficiency was in the following order: GTS SLNs > PRE SLNs > WE 85 SLNs > GMS SLNs. DSC and pXRD showed that much of the incorporated fraction of OL existed in the amorphous state after incorporation into SLNs. A sharp increase in the flocculation of the SLN dispersions was observed upon addition of 0.6 M aqueous sodium sulfate solution. Nanoparticle surface hydrophobicity was in the following order: GTS SLNs > PRE SLNs > WE 85 SLNs > GMS SLNs. A significant increase in size and zeta potential was observed for GTS SLN and WE 85 SLN dispersions stored at 40 degrees C. Release of OL from the SLNs was sustained up to 48 hours in pH 7.4 PB and obeyed Higuchi's release kinetics.  相似文献   

4.
Exogenously supplied alpha-lipoic acid (LA) has proven to be effective as an antioxidant. In an effort to develop a water-soluble formulation for topical administration, LA was formulated in the form of solid lipid nanoparticles (SLN), nanostructure lipid carriers (NLC), and nanoemulsion (NE) and characterized in terms of physical and biological properties. Mean particle size of 113, 110, and 121 nm were obtained for NE, NLC, and SLN, respectively, with narrow size distribution. Zeta potential was approximately in the range of −25 to −40 mV. Disc and spherical structures of nanoparticles were observed by cryo-scanning electron microscopy. Entrapment efficiency of LA in three formulations was found to be more than 70%. After 120 days of storage at 25°C, physical stability of all formulations remained unchanged whereas the entrapment efficiency of SLN and NLC could be maintained, suggesting relative long-term stability. Prolonged release of LA formulation following the Higuchi model was found where a faster release was observed from NE compared with that of SLN and NLC. More than 80% of cell survivals were found up to 1 μM of LA concentrations. Antioxidant activity analysis demonstrated that all LA-loaded formulations expressed antioxidant activity at a similar magnitude as pure LA. These results suggest that chosen compositions of lipid nanoparticles play an important role on drug loading, stability, and biological activity of nanoparticles. Both SLN and NLC demonstrated their potential as alternative carriers for aqueous topical administration of LA.  相似文献   

5.
The relapse of cancer after first line therapy with anticancer agents is a common occurrence. This recurrence is believed to be due to the presence of a subpopulation of cells called cancer stem cells in the tumor. Therefore, a combination therapy which is susceptible to both types of cells is desirable. Delivery of this combinatorial approach in a nanoparticulate system will provide even a better therapeutic outcome in tumor targeting. The objective of this study was to develop and characterize nanoparticulate system containing two anticancer agents (cyclopamine and paclitaxel) having different susceptibilities toward cancer cells. Both drugs were entrapped in glyceryl monooleate (GMO)-chitosan solid lipid as well as poly(glycolic-lactic) acid (PLGA) nanoparticles. The cytotoxicity studies were performed on DU145, DU145 TXR, and Wi26 A4 cells. The particle size of drug-loaded GMO-chitosan nanoparticles was 278.4 ± 16.4 nm with a positive zeta potential. However, the PLGA particles were 234.5 ± 6.8 nm in size with a negative zeta potential. Thermal analyses of both nanoparticles revealed that the drugs were present in noncrystalline state in the matrix. A sustained in vitro release was observed for both the drugs in these nanoparticles. PLGA blank particles showed no cytotoxicity in all the cell lines tested, whereas GMO-chitosan blank particles showed substantial cytotoxicity. The types of polymer used for the preparation of nanoparticles played a major role and affected the in vitro release, cytotoxicity, and uptake of nanoparticles in the all the cell lines tested.KEY WORDS: cancer stem cells, cyclopamine, glyceryl monooleate, nanoparticles, PLGA  相似文献   

6.
The objective of the present investigation was to formulate solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for improving the dermal delivery of a local anesthetic agent lidocaine (LID). SLN and NLC were characterized for particle size distribution, polydispersity index, entrapment efficiency, X-ray powder diffraction pattern (XRD), thermal behavior by differential scanning colorimeter (DSC) and surface morphology by transmission electron microscopy (TEM). LID-loaded SLN and NLC were formulated into hydrogels for topical application. The in vitro permeation profiles of LID SLN gel, LID NLC gel, and a marketed LID formulation (Xylocaine® gel) were evaluated by using guinea pig skin. The in vivo efficacy of LID SLN gel, LID NLC gel, and a marketed LID formulation (Xylocaine® gel) gel was evaluated on guinea pig using pinprick test. LID SLN showed a particle size of 78.1 nm with a polydispersity index of 0.556, whereas LID NLC showed a particle size of 72.8 nm with a polydispersity index of 0.463. The entrapment efficiency of LID in both SLN and NLC was 97% and 95.9%, respectively. The TEM studies revealed the almost spherical nature of LID SLN and NLC formulations. The XRD and DSC studies of LID SLN suggested amorphization of drug in the carrier system. The SLN formulation was stable with respect to particle size, polydispersity, and entrapment efficiency for 6 months at 40°C/75% relative humidity (RH). Negligible leakage was observed for the NLC formulation when stored for 1 month at 40°C/75% RH. In vitro permeation studies indicated that LID SLN gel and LID NLC gel significantly sustained the LID release compared to that of Xylocaine® gel. The in vivo efficacy results supported the results of the in vitro permeation studies wherein the LID SLN gel and LID NLC gel resulted in fivefold and sixfold increase in duration of anesthesia, respectively, compared to that of Xylocaine® gel.  相似文献   

7.
The thermal properties and heat-induced denaturation and aggregation of soy protein isolates (SPI) were studied using modulated differential scanning calorimetry (MDSC). Reversible and non-reversible heat flow signals were separated from the total heat flow signals in the thermograms. In the non-reversible profiles, two major endothermic peaks (at around 100 and 220 degrees C, respectively) associated with the loss of residual water were identified. In the reversible profiles, an exothermic peak associated with thermal aggregation was observed. Soy proteins denatured to various extents by heat treatments showed different non-reversible and reversible heat flow patterns, especially the exothermic peak. The endothermic or exothermic transition characteristics in both non-reversible and reversible signals were affected by the thermal history of the samples. The enthalpy change of the exothermic (aggregation) peak increased almost linearly with increase in relative humidity (RH) in the range between 8 and 85%. In contrast, the onset temperature of the exotherm decreased progressively with increase in RH. These results suggest that the MDSC technique could be used to study thermal properties and heat-induced denaturation/aggregation of soy proteins at low moisture contents. Associated functional properties such as water holding and hydration property can also be evaluated.  相似文献   

8.
The purpose of this research was to apply vacuum foam drying (VFD) for processing of LaSota virus and to screen formulation additives for its stability. The aqueous dispersion of harvest containing sucrose or trehalose in combination with additive (monosaccharides, polymers, N-Z-amine) was prepared. The diluted dispersions in vials were vacuum concentrated, foamed to form a continuous structure, and vacuum dried. The products were evaluated for foam characteristics, residual moisture, virus titer, x-ray diffraction pattern, and stability profile. The foamability increased with solid content in solutions. The foamability of sucrose was enhanced with incorporation of N-Z-amine (10% and 15% wt/vol) and polyvinyl pyrrolidone (PVP K30, 3% wt/vol). The fructose- or galactose-containing mixtures were deposited irregularly on the vial surface. The virus titer increased with disaccharides in the formulation. Sucrose provided better protection than trehalose. Unlike lyophilization, N-Z-amine with sucrose protected the virus from Millard’s Browning. Amino acids do not have a catalytic effect on hydrolysis of sucrose during VFD. Monosaccharides were ineffective. A synergistic effect of PVP K30 or polyethylene glycol 6000 (3% wt/vol) with N-Z-amine provided the maximum virus titer (6.97 and 7.15, respectively). This formulation retained the desired virus potency at 5°, 25°, and 40°C. The diffraction pattern revealed that a threshold concentration of N-Z-amine was required for inhibiting crystallization of sucrose during VFD. VFD was successfully applied to produce a solid LaSota formulation. The products were amorphous and did not devitrify on storage. Published: July 21, 2006  相似文献   

9.
The effect of SLN incorporation on transdermal delivery and in vitro antiherpetic activity of Artemisia arborescens essential oil was investigated. Two different SLN formulations were prepared using the hot-pressure homogenization technique, Compritol 888 ATO as lipid, and Poloxamer 188 and Miranol Ultra C32 as surfactants. Formulations were examined for their stability for two years by monitoring average size distribution and zeta potential values. The antiviral activity of free and SLN incorporated essential oil was tested in vitro against Herpes Simplex Virus-1 (HSV-1) by a quantitative tetrazolium-based colorimetric method (MTT), while the effects of essential oil incorporation into SLN on both the permeation through and the accumulation into the skin strata was investigated by using in vitro diffusion experiments through newborn pig skin and an almond oil Artemisia essential oil solution as a control. Results showed that both SLN formulations were able to entrap the essential oil in high yields and that the mean particle size increased only slightly after two years of storage, indicating a high physical stability. In vitro antiviral assays showed that SLN incorporation did not affect the essential oil antiherpetic activity. The in vitro skin permeation experiments demonstrated the capability of SLN of greatly improving the oil accumulation into the skin, while oil permeation occurred only when the oil was delivered from the control solution.  相似文献   

10.
The aim of this work was to produce and characterize solid lipid nanoparticles (SLN) containing levothyroxine sodium for oral administration, and to evaluate the kinetic release of these colloidal carriers. SLNs were prepared by microemulsion method. The particle size and zeta potential of levothyroxine sodium-loaded SLNs were determined to be around 153 nm,?43 mV (negatively charged), respectively by photon correlation spectroscopy. The levothyroxine entrapment efficiency was over 98 %. Shape and surface morphology were determined by TEM and SEM. They revealed fairly spherical shape of nanoparticles.SLN formulation was stable over a period of 6 months. There were no significant changes in particle size, zeta potential and polydispersity index and entrapment efficiency, indicating that the developed SLNs were fairly stable.  相似文献   

11.
Solid lipid nanoparticle (SLN) suspensions undergo a phase transition from the α- to β-polymorphic forms, which is accompanied by particle aggregation and gel formation. These processes are both time and temperature dependent, and so it is important to study the impact of cooling rates (CRs) and heating rates (HRs) on polymorphic transformations, particle aggregation, and gelation. Rheology measurements indicated that the temperature where gelation was first observed during cooling (T gel) decreased with increasing CRs, with SLN suspensions remaining fluid at HR ≥ 5 °C/min. On the other hand, the temperature where gelation was first observed during heating of stable SLN suspensions increased with increasing HRs: 18, 24, 31, and 45 °C at 2, 5, 10, and 20 °C/min, respectively. When the melted SLN suspensions were cooled again, two exothermic peaks were observed in the differential scanning calorimetry scans at 39 (which was attributed to coalesced oil) and 19 °C (which was attributed to stable SLN). With increasing CR, the enthalpy of the coalescence peak (ΔH CO) decreased, while that of the supercooled SLN (ΔH SLN) increased. With increasing HR, ΔH CO decreased and ΔH SLN increased, with no coalescence being observed at HR ≥ 10 °C/min. These results show that increasing the CRs or HRs retard the α→β polymorphic transformation, which increased the stability of SLN against aggregation and retarded gelation. In addition, this study shows that the careful selection of HRs and CRs is required to examine polymorphic transformations and the stability of SLN suspensions.  相似文献   

12.
Solid lipid nanoparticles (SLNs) of duloxetine hydrochloride (DLX) were prepared to circumvent the problems of DLX, which include acid labile nature, high first-pass metabolism, and high-dosing frequency. The DLX-SLNs were prepared by using two different techniques, viz. solvent diffusion method and ultrasound dispersion method, and evaluated for particle size, zeta potential, entrapment efficiency, physical characteristics, and chemical stability. Best results were obtained when SLNs were prepared by ultrasound dispersion method using glyceryl mono stearate as solid lipid and DLX in ratio of 1:20 and mixture of polysorbate 80 and poloxamer 188 as surfactant in concentration of 3%. The mean particle size of formulation and entrapment efficiency was 91.7 nm and 87%, respectively, and had excellent stability in acidic medium. Differential scanning calorimetry and X-ray diffraction data showed complete amorphization of DLX in lipid. In vitro drug release from SLNs was observed for 48 h and was in accordance with Higuchi kinetics. In vivo antidepressant activity was evaluated in mice by forced swim test. DLX-SLNs showed significant enhancement in antidepressant activity at 24 h when administered orally in comparison to drug solution. These results confirm the potential of SLNs in enhancing chemical stability and improving the efficacy of DLX via oral route. The SLN dispersion was converted into solid granules by adsorbing on colloidal silicon dioxide and characterized for particle size after redispersion, morphology, and flow properties. Results indicated that nanoparticles were successfully adsorbed on the carrier and released SLNs when dispersed in water.  相似文献   

13.
Ultrasonication was employed to prepare solid lipid nanoparticles (SLN). The model traditional Chinese medicine, tetrandrine (TET), was incorporated into SLN. The TET–loaded SLN (TET–SLN) were spherical in the photograph of transmission electron microscope (TEM). The particle size measured by laser diffraction (LD) was found to be 157.3 ± 8.2 nm. Zeta potential analyzer suggested the zeta potential of TET–SLN was −29.36 ± 3.68 mV in distilled water. The entrapment efficiency (EE%) was determined with the sephadex gel chromatogram and high-performance liquid chromatogram (HPLC), and up to 90.59% of TET was incorporated. Stability evaluation showed relatively long-term stability with only slight particle growth (P > 0.05) after storage at room temperature for 4 weeks. Therefore, ultrasonication is demonstrated to be a simple, available and effective method to prepare high quality SLN loaded traditional Chinese medicine.  相似文献   

14.
Stable solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) formulations to enhance the dissolution rates of poorly soluble drug spironolactone (SP) were being developed. Probe ultra-sonication method was used to prepare SLNs and NLCs. All NLCs contained stearic acid (solid lipid carrier) and oleic acid (liquid lipid content), whereas, SLNs were prepared and optimised by using the solid lipid only. The particles were characterised in terms of particle size analysis, thermal behaviour, morphology, stability and in vitro release. The zeta sizer data revealed that the increase in the concentration of oleic acid in the formulations reduced the mean particle size and the zeta potential. The increase in concentration of oleic acid from 0 to 30% (w/w) resulted in a higher entrapment efficiency. All nanoparticles were almost spherically shaped with an average particle size of about ~170 nm. The DSC traces revealed that the presence of oleic acid in the NLC formulations resulted in a shift in the melting endotherms to a higher temperature. This could be attributed to a good long-term stability of the nanoparticles. The stability results showed that the particle size remained smaller in NLC compared to that of SLN formulations after 6 months at various temperatures. The dissolution study showed about a 5.1- to 7.2-fold increase in the release of the drug in 2 h compared to the raw drug. Comparing all nanoparticle formulations indicated that the NLC composition with a ratio of 70:30 (solid:liquid lipid) is the most suitable formulation with desired drug dissolution rates, entrapment efficiency and physical stability.  相似文献   

15.
Colorectal cancer is a global concern, and its treatment is fraught with non-selective effects including adverse side effects requiring hospital visits and palliative care. A relatively safe drug formulated in a bioavailability enhancing and targeting delivery platform will be of significance. Metformin-loaded solid lipid nanoparticles (SLN) were designed, optimized, and characterized for particle size, zeta potential, drug entrapment, structure, crystallinity, thermal behavior, morphology, and drug release. Optimized SLN were 195.01?±?6.03 nm in size, ?17.08?±?0.95 mV with regard to surface charge, fibrous in shape, largely amorphous, and release of metformin was controlled. The optimized size, charge, and shape suggest the solid lipid nanoparticles will migrate and accumulate in the colon tumor preventing its proliferation and subsequently leading to tumor shrinkage and cell death.  相似文献   

16.
The aim of the present study was to investigate the feasibility of the inclusion of a water-insoluble drug (diazepam, DZ) into solid lipid nanoparticles (SLNs), which offer combined advantages of rapid onset and prolonged release of the drug. This work also describes a new approach to prepare suppositories containing DZ-loaded SLN dispersions, as potential drug carrier for the rectal route. Modified high-shear homogenization and ultrasound techniques were employed to prepare SLNs. The effect of incorporation of different concentrations of Compritol® ATO 888 or Imwitor® 900K and Poloxamer 188 or Tween 80 was investigated. Results showed that varying the type or concentration of lipid matrix or surfactant had a noticeable influence on the entrapment efficiencies, particle size, and release profiles of prepared SLNs. Differential scanning calorimetry and X-ray diffraction measurements showed that the majority of SLNs possessed less ordered arrangements of crystals than the corresponding bulk lipids, which was favorable for increasing the drug loading capacity. Transmission electron microscopy and laser diffractometry studies revealed that the prepared nanoparticles were round and homogeneous and 60% of the formulations were less than 500 nm. Additionally, SLN formulations showed significant (P?in vitro release of DZ from the suppositories prepared using DZ-loaded SLN dispersions (equivalent to 2 mg DZ) was significantly (P?相似文献   

17.
Polymeric micelles were studied as delivery carriers of diazepam, a practically insoluble drug in water, for rectal administration. The diazepam-loaded polymeric micelles were developed by using poloxamer 407 (P407), poloxamer 188, and d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS). Among the used polymers, TPGS resulted in polymeric micelles with good characteristics for encapsulation of diazepam which had the small particle size of 8–12 nm and narrow size distribution (PI 0.053–0.275). Additionally, 7.5% w/v of TPGS could entirely entrap the desired concentration of diazepam (5 mg/mL). To improve the physical stability upon lyophilization, an addition of P407 of 1% w/v prevented aggregation, increased physical stability, and maintained chemical stability of the lyophilized powders of diazepam-loaded polymeric micelles for 3 months storage at 4°C. The rate and amount of diazepam release from TPGS polymeric micelles mainly depended on the concentration of TPGS. The release data were fitted to Higuchi''s model suggesting that the drug release mechanism was controlled by Fickian diffusion. In conclusion, 10% w/v TPGS and 1% w/v P407 were the optimum formulation of lyophilized diazepam-loaded polymeric micelles.Key words: diazepam, lyophilization, poloxamer 407, polymeric micelles, d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)  相似文献   

18.
Abstract

The purpose of this research was to develop cubosomal mucoadhesive in situ nasal gel to enhance the donepezil HCl delivery to the brain. Glycerol mono-oleate (GMO) and surfactant poloxamer 407 were used to prepare cubosomes. The developed formulations were characterized for particle size (PS), poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), transmission electron microscopy (TEM), in vitro drug release and in vivo bio-distribution study in blood and brain tissue. Central composite design was used for the optimization purpose and the selected formulation (containing GMO 2?g and poloxamer 1.5%) was prepared in presence of gellan gum and konjac gum as gelling agent and mucoadhesive agent respectively. The optimal cubosomal dispersion and optimal cubosomal mucoadhesive in situ nasal gel were subjected to in vivo bio-distribution studies in rat model. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the drug solution. Thus, the formulated cubosomal mucoadhesive in situ gel could be considered as a promising carrier for brain targeting of CNS acting drugs through the transnasal route.  相似文献   

19.
The purpose of the study was to prepare stable liposomally entrapped budesonide (BUD) for a dry powder inhaler (DPI) formulation. BUD liposomes composed of egg phosphatidyl choline and cholesterol were prepared by lipid film hydration technique and sonicated to have the desired size (<5 μm). A rapid method was used for separation of free drug by centrifugation at a lower centrifugal force (G value). Liposomal dispersion was subjected to lyophilization after blending BUD with cryoprotectant in varying bulk and mass ratios, and percent drug remaining entrapped after lyophilization was optimized. Comparative drug retention studies on storage of DPI formulations were carried out in accordance with International Conference on Harmonization guidelines. Critical relative humidity of the formulations was determined and reported as one of the manufacturing controls. Sucrose was found to be the most effective cryoprotectant when present on both sides of the lamellae of liposomes in a bulk strength of 500 mM and mass ratio of lipid:sugar; 1∶10. Blending of sorbolac before lyophilization showed better retention of encapsulated drug (95.59%). The respirable fraction of the product (20.69±1.50%) was comparable with that of the control (26.49±1.52%), suggesting that the liposomal BUD can be successfully delivered throughout the broncho-pulmonary tree. The findings demonstrate that liposome of BUD can be prepared with a high entrapment value, stabilized by lyophilization, and delivered as an aerosolized DPI. The stability studies of lyophilized product suggests a shelf-life of one year when stored under refrigeration (2°C–8°C).  相似文献   

20.
Taspine solid lipid nanoparticles (Ta-SLN) and taspine solid lipid nanoparticles modified by galactoside (Ta-G(2)SLN) were prepared by the film evaporation-extrusion method. The nanoparticles were spherical or near-spherical particles with smooth surface, small size and high encapsulation efficiency. Ta-G(2)SLN and Ta-SLN showed significant inhibition on 7721 cell growth. Intravenous injection of either Ta-SLN or Ta-G(2)SLN resulted in a higher plasma and liver concentration and a longer retention time in mice compared with the administration of Ta. These results suggested that SLN tended to be preferentially delivered to the liver and Ta-G(2)SLN may further enhance liver targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号