首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144?±?0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.  相似文献   

2.
The aim of this work was to evaluate the in vitro performance of a nebulized nanoemulsion formulation which had been optimised previously. To do so, a transparent nanoemulsion preparation containing 1.5 mg/ml of budesonide was prepared and diluted to achieve concentrations of 250 and 500 μg/ml budesonide. The in vitro characteristics of the diluted nanoemulsions were then compared with the commercially available suspension of budesonide (Pulmicort Respules®) when nebulized using a jet and a vibrating mesh nebulizer. A smaller MMAD with improved aerosol output was observed in the nanoemulsion preparations compared with the corresponding suspension formulations indicating an improved in vitro performance for the nanoemulsion-based preparations.  相似文献   

3.
In the present study, the potential of transdermal nanoemulsion gel of selegiline hydrochloride for the treatment of Parkinson’s disease was investigated. Water-in-oil nanoemulsions were developed by comparing low- and high-energy methods and were subjected to thermodynamic stability tests, in vitro permeation, and characterization studies. In vitro studies indicated that components of nanoemulsion acted as permeation enhancers with highest flux of 3.531 ± 1.94 μg/cm2/h from nanoemulsion SB6 containing 0.5 mg selegiline hydrochloride, 3% distilled water, 21% S mix (Span 85, Tween 80, PEG 400), and 76% isopropyl myristate by weight. SB6 with the least droplet size of 183.4 ± 0.35 nm, polydispersity index of 0.42 ± 0.06 with pH of 5.9 ± 0.32 and viscosity of 22.42 ± 0.14 cps was converted to nanoemulsion gel NEGS4 (viscosity = 22,200 ± 400 cps) by addition of Viscup160® for ease of application and evaluated for permeation, safety, and pharmacokinetic profile in Wistar rats. It provided enhancement ratio 3.69 times greater than conventional gel. NEGS4 showed 6.56 and 5.53 times increase in bioavailability in comparison to tablet and conventional gel, respectively, along with sustained effect. Therefore, the developed water-in-oil nanoemulsion gel promises to be an effective vehicle for transdermal delivery of selegiline hydrochloride.  相似文献   

4.
A multifunctional platform to deliver three diverse proteins of insulin, interferon beta (INF-β) and erythropoietin (EPO), using a novel copolymeric microparticulate system of TMC-PEGDMA-MAA, was synthesised as an intelligent pH-responsive 2-fold gastric and intestinal absorptive system. Physiochemical and physicomechanical studies proved the degree of crystallinity that supported the controlled protein delivery of the microparticulate system. The copolymer was tableted before undertaking in vitro and in vivo analysis. After 2.5 h in simulated gastric fluid (SGF), insulin showed a fractional release of 3.2% in comparison to simulated intestinal fluid (SIF), in which a maximum of 83% of insulin was released. Similarly, INF-β and EPO released 3 and 9.7% in SGF and a maximum of 74 and 81.3% in SIF, respectively. In vivo studies demonstrated a significant decrease in blood glucose by 54.19% within 4 h post-dosing, and the comparator formulation provided 74.6% decrease in blood glucose within the same time period. INF-β peak bioavailable dose in serum was calculated to be 1.3% in comparison to an SC formulation having a peak concentration of 0.9%, demonstrating steady-state release for 24 h. EPO-loaded copolymeric microparticles had a 1.6% peak bioavailable concentration, in comparison to the 6.34% peak concentration after 8 h from the SC comparator formulation.  相似文献   

5.
Piroxicam is used in the treatment of rheumatoid arthritis, osteoarthritis, and other inflammatory diseases. Upon oral administration, it is reported to cause ulcerative colitis, gastrointestinal irritation, edema and peptic ulcer. Hence, an alternative delivery system has been designed in the form of transethosome. The present study describes the preparation, optimization, characterization, and ex vivo study of piroxicam-loaded transethosomal gel using the central composite design. On the basis of the prescreening study, the concentration of lipids and ethanol was kept in the range of 2–4% w/v and 0–40% v/v, respectively. Formulation was optimized by measuring drug retention in the skin, drug permeation, entrapment efficiency, and vesicle size. Optimized formulation was incorporated in hydrogel and compared with other analogous vesicular (liposomes, ethosomes, and transfersomes) gels for the aforementioned responses. Among the various lipids used, soya phosphatidylcholine (SPL 70) and ethanol in various percentages were found to affect drug retention in the skin, drug permeation, vesicle size, and entrapment efficiency. The optimized batch of transethosome has shown 392.730 μg cm?2 drug retention in the skin, 44.312 μg cm?2 h?1 drug permeation, 68.434% entrapment efficiency, and 655.369 nm vesicle size, respectively. It was observed that the developed transethosomes were found superior in all the responses as compared to other vesicular formulations with improved stability and highest elasticity. Similar observations were noted with its gel formulation.  相似文献   

6.
Optimization of a lyophilized fast-disintegrating tablet (LFDT) formulation containing naratriptan hydrochloride, an antimigraine drug, was the foremost objective of the study, aiming in achieving fast headache pain relief. The Design-Expert® v10 software was used to generate formulations using D-optimal mixture design with four components: gelatin (X1), hydrolyzed gelatin (X2), glycine (X3), and mannitol (X4) of total solid material (TSM) w/w. The effect of the relative proportion of each component was determined on friability (Y1), hardness (Y2), and in vitro disintegration time (Y3), which was then applied for formulation optimization. In addition, their effect on tablet porosity was determined via scanning electron microscopy (SEM). Drug-excipient interaction was evaluated using differential scanning calorimetry (DSC). A comparative dissolution study against the conventional tablets was studied. Accelerated stability study was carried out in (Al/Al) and (Al/PVC) blister packs. An in vivo pharmacokinetic study was carried out to compare the optimized formulation and the conventional tablets. The optimized formulation’s responses were 0.30%, 3.4 kg, and 6.12 s for Y1, Y2, and Y3, respectively. No drug-excipient interaction was specified via DSC. The optimized formulation exhibited porous structure as determined via SEM. Dissolution study demonstrated complete dissolution within 1.5 min. Study indicated stability for 78 months in (Al/Al) blister packs. In vivo pharmacokinetic study demonstrated that Cmax, AUClast, and AUCinf were significantly higher for the developed formulation. As well, the Tmax was 1 h earlier than that of convenient tablet. An LFDT would achieve a faster onset of action for naratriptan compared to other formulations.  相似文献   

7.
Copaiba oil is used as a popular medicine in the Amazonian forest region, especially due to its anti-inflammatory properties. In this paper, we describe the formulation of hydrogel containing copaiba oil nanoemulsions (with positive and negative charges), its skin permeation, and its anti-inflammatory activity in two in vivo models: mouse ear edema and rat paw edema. Three hydrogels were tested (Carbopol®, hydroxyethylcellulose and chitosan), but only Carbopol® and hydroxyethylcellulose hydrogels presented good stability and did not interfere with the nanoemulsions droplet size and polydispersity index. In skin permeation assay, both formulations, positively charged nanoemulsion (PCN) and negatively charged nanoemulsion (NCN), presented a high retention in epidermis (9.76 ± 2.65 μg/g and 7.91 ± 2.46 μg/cm2, respectively) followed by a smaller retention in the dermis (2.43 ± 0.91 and 1.95 ± 0.56 μg/cm2, respectively). They also presented permeation to the receptor fluid (0.67 ± 0.22 and 1.80 ± 0.85 μg/cm2, respectively). In addition, anti-inflammatory effect was observed to NCN and PCN with edema inhibitions of 69 and 67% in mouse ear edema and 32 and 72% in rat paw edema, respectively. Histological cuts showed the decrease of inflammatory factors, such as dermis and epidermis hyperplasia and inflammatory cells infiltration, confirming the anti-inflammatory effect from both copaiba oil nanoemulsions incorporated in hydrogel.  相似文献   

8.
The aim of the present work is to answer the question is it possible to replace the ester prodrug candesartan cilexetil (CC) by its active metabolite candesartan (C) to bypass the in vivo variable effect of esterase enzymes. A comparative physicochemical evaluation was conducted through solubility, dissolution, and stability studies; additionally, ex vivo permeation and in vivo studies were assessed. C demonstrated higher solubility over CC at alkaline pH. Moreover, dissolution testing using the pharmacopeial method showed better release profile of C even in the absence of surfactant in the testing medium. Both drugs demonstrated a slight degradation in acidic pH after short-term stability. Instead, shifting to alkaline pH of 6.5 and 7.4 showed superiority of C solution stability compared to CC solution. The ex vivo permeation results demonstrated that the parent compound C has a significant (P < 0.05) enhanced permeation compared to its prodrug from CC, that agreed with in vivo results in which C suspension reached significantly (P < 0.05) higher C max of 1.39 ± 0.59 μg/mL at T max of 0.66 ± 0.11 h, while CC suspension reached C max of 0.47 ± 0.22 μg/mL at T max of 2.00 ± 0.27 h, a lag period of 40 min is needed prior to detection of any absorbed CC in plasma. Those findings are not in agreement with the previously reported rationale on the prodrug formation owing to the poor permeability of the parent compound, suggesting the possibility of marketing the parent drug candesartan for clinical use similarly to azilsartan and its prodrug.  相似文献   

9.
Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 23 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.  相似文献   

10.
Albumin-conjugated multilayered nanoemulsion (albumin-MNE) of methyl prednisolone (MP) was developed to ensure the specificity of the drug at the spinal cord injury (SCI) site. MNE was prepared by emulsification followed by ionic deposition of oppositely charged polymer followed by albumin conjugation using N-hydroxysuccinimide. Prepared nanoemulsion was characterized for particle size, polydispersity index (PDI), zeta potential (Zp), pH, viscosity, and entrapment efficiency. It was further evaluated for shape and morphological analysis, in vitro release, cell viability, and in vivo efficacy against post SCI-like conditions in terms of behavioral assessment, histopathological evaluation, and immunoflorescence assay of the histological sections showing Bax-driven apoptosis. Entrapment efficiency, particle size, PDI, and Zp of spherical-shaped, smooth-surfaced MNE droplets were found to be 68.9%, 83.2 ± 14.4 nm, 0.231, and + 62.7 mV, respectively. In vitro release of MP from MNE and albumin-MNE was observed to be 68.5 and 72.2% after 96th hour of the study. MNE showed higher viability of astrocytes than MP solution. Albumin-MNE improved behavior of SCI rat and histopathological conditions in a very effective manner when compared with MNE. Immunoflorescence assay reveals explicit decline in mitochondrial-mediated apoptosis by sub-cellular upregulation of Bax at spinal cord injury site. In conclusion, albumin-MNE delivered MP specifically at SCI site and avoided its instant availability inside astrocytes culture. On account of which the chitosan stabilized, lecithin-emulsified, multilayered nanoemulsion of MP depicts higher efficacy and safety than MNE and may offer safe and effective mean for the treatment of post SCI-like conditions in human.  相似文献   

11.
The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO2-FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO2. And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO2-FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO2-NE, GBP-TiO2-NE, TiO2-FA-CS-NPs, and GBP-TiO2-FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO2-FA-CS-NPs at low TiO2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO2-FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca2+ into extracellular spaces via inhibiting Ca2+-ATPase and Ca2+/Mg2+-ATPase.  相似文献   

12.
In this study, an optimized epichlorohydrin-crosslinked semi-interpenetrating polymer network xerogel matrix system (XePoMas) for the controlled delivery of sulpiride was prepared. The ability of XePoMas to sustain drug release was determined by in vitro and in vivo drug release experiments. Swelling of the xerogel over the 24-h experimental period ranged from 346 to 648%; swelling was observed to increase exponentially over the initial 8 h. In vitro drug release depicted a linear zero order drug release profile with an R 2 value of 0.9956. The ability of the fabricated XePoMas to sustain drug release and enhance bioavailability of sulpiride in vivo was investigated by evaluating the plasma drug concentration over 24 h in the large pig model. The optimized XePoMas formulation was shown to increase intestinal absorption of sulpiride to a greater extent than the marketed product in vivo, with a C max of 830.58 ng/mL after 15 h.  相似文献   

13.
The objective of this study was to develop proliposomal formulation for a poorly bioavailable drug, tacrolimus. Proliposomes were prepared by thin film hydration method using different lipids such as hydrogenated soy phosphatidylcholine (HEPC), soy phosphatidylcholine (SPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. Proliposomes were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague-Dawley (SD) rats. Among the different formulations, proliposomes with drug/DSPC/cholesterol in the ratio of 1:2:0.5 demonstrated the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes compared to pure tacrolimus in purified water after 1 h. Tacrolimus permeability across PAMPA and everted rat intestinal perfusion models was significantly higher with proliposomes. The optimized formulation of proliposomes indicated a significant improvement in the rate and absorption of tacrolimus. Following a single oral administration, a relative bioavailability of 193.33% was achieved compared to pure tacrolimus suspension.  相似文献   

14.
Over a hundred years after the discovery of Chagas disease, this ailment continues to affect thousands of people. For more than 40 years, only two drugs have been available to treat it. Ursolic acid is a naturally occurring terpene that has shown a good trypanocidal action. However, the hydrophobicity of this compound presents a challenge for the development of proper delivery systems. Nanostructured systems are a prominent in delivering lipophilic drugs. Thus, a nanoemulsion containing ursolic acid was developed and had its trypanocidal activity and cytotoxicity evaluated. Pseudo-ternary phase diagrams and hydrophilic-lipophilic balance (HLB) system were used in the development. The system was stable throughout 90 days of testing, as evidenced by turbidimetry analysis and measurements of the droplet size (57.3 nm) and polydispersity index (0.24). Fourier transform infrared spectroscopy and mass spectrometry evidenced drug’s integrity in the formulation. An in vitro dissolution profile showed 75% of ursolic acid release after 5 min from the nanoemulsion into the alkaline dissolution medium, while only 20% could be released from a physical mixture after 2 h. Trypanocidal activity and cytotoxicity were evaluated on the CL Brener strain and LLC-MK2 (monkey kidney) fibroblast by chlorophenol red-β-d-galactoside (CPRG) method. Biological studies showed that the developed formulation was nontoxic and effective against replicant forms of the parasite. A stable and efficient nanoemulsion could be developed to improve the delivery of a promising drug to treat a threatening illness such as Chagas disease.  相似文献   

15.
Jojoba oil-based emulgel formulations were prepared using different concentrations of various gelling agents, such as hydroxypropyl methylcellulose (HPMC) and Carbopol 934 P and combination of both. The prepared emulgels were physically evaluated for their stability after temperature cycle test, centrifugation and long-term shelf storage for 1 year at room temperature. The in vitro release at 37°C was studied to define the effect of the concentration and type of the gelling agent. A comparison between the formulated emulgels and two commercially available products, Candistan® and Canesten® creams, was carried out to judge their efficacy and stability. The prepared emulgels exhibited non-Newtonian shear thinning behavior with little or no thixotropy. Four emulgels showed excellent stability as they demonstrated consistent rheological model under different treatment conditions. The in vitro release test showed variation in the extent of percent drug released. The drug release from the commercial preparation was lower than some of the prepared emulgel formulae. One formula containing combination of the two gelling agents (HPMC and Carbopol 934 P), showed excellent stability and high extent of clotrimazole release was microbiologically evaluated against Candida albicans using cylinder and plate method. The selected formula showed superior antimycotic activity compared to the commercially available formulation. Further in vivo animal studies for the obtained stable formula is recommended.  相似文献   

16.
Citrus auranticum and Glycyrrhiza glabra are rich in anti-oxidant polyphenols helpful in prevention of skin aging. Polyphenols have high polarity and lower skin penetration resulting in lower cutaneous delivery. The present work is attempted to develop a novel polyherbal phospholipid complex cream to improve cutaneous delivery of polyphenols for sustained anti-oxidant action. Phytochemical and in vitro anti-oxidant evaluation was done on methanolic extracts of orange peel and liquorice powder. Total phenolic content, total flavonoid content, and anti-oxidant assays were done on different ratios of orange peel and liquorice extract. Ratio 1:2 gave highest total phenolic content (TPC) (530.00?±?1.56 mg gallic acid equivalent (GAE)?g?1 extract), total flavonoid content (TFC) (246.25?±?1.03 mg rutin equivalent (RUE)?g?1 extract), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (87.99?±?0.64%), and H2O2 scavenging activity (72.47?±?0.86%) and hence was used for formulation. Solvent evaporation method using methanol with 1:1 extract to phospholipid ratio was found to have entrapment efficiency of 93.22?±?0.26%. Evaluation parameters like scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), and differential scanning calorimetry (DSC) confirmed formation of complex. The complex was formulated as oil-in-water cream and evaluated for various parameters. The optimized cream containing 1% complex was non-irritant and was found to be stable for 3-month period under conditions of stability study. Ex vivo diffusion studies showed that extract phospholipid complex cream had better retention of polyphenols in the skin when compared to conventional extract cream giving prolonged and stronger topical action. The cream had an anti-elastase activity of 28.02?±?0.95% at concentration of 3000 μg ml?1 (w/v). Thus, the developed safe and stable polyherbal phytophospholipid complex cream exhibited good potential as anti-aging cosmeceutical.  相似文献   

17.
The current study aimed to develop a prolonged-release pramipexole (PPX) transdermal patch for the treatment of Parkinson’s disease. Permeation parameters of PPX were investigated using human cadaver skin. Pramipexole patches were prepared using DURO-TAK® pressure-sensitive-adhesive (PSA) and evaluated for drug stability, drug loading, in vitro drug release, and in vitro permeation through mouse skin. The results indicated that blends of DURO-TAK® 87-2852 and DURO-TAK® 87-2510 were suitable for creating a prolonged-release PPX patch due to their advantages in drug release, drug loading, and stability. The final formulation consisted of 87-2852/87-2510 (70:30), 10% PG, and 15% PPX and showed a cumulative permeation amount of 1497.19?±?102.90 μg/cm2 with a continuous flux over 6.0 μg/(cm2·h) across human cadaver skin for 7 days. In vivo studies in rats indicated that PPX patch produced a significantly longer (p?<?0.001) half-life (t 1/2, 75.16?±?17.37 h) and mean residence time (MRT, 135.89?±?24.12 h) relative to oral tablets (Sifrol®) and had a relative bioavailability of 51.64?±?21.32%. Therefore, this study demonstrated the feasibility of developing a prolonged-release PPX patch, which proposed the potential to serve as an alternate to conventional oral tablets and may therefore improve patient compliance.  相似文献   

18.
Andrographolide (AP), a phytoconstituent of Andrographis paniculata is reported as a potent hepatoprotective agent. However, utility of this molecule is restricted due to its low aqueous solubility, gastric instability and hence low bioavailability. It was aimed to formulate and characterize AP-loaded, natural biopolymer stabilized, multilayered nano-hydrocolloid delivery system. Nanoemulsion (NE) was formulated using layer-by-layer (LbL) technology via electrostatic deposition of chitosan over alginate encrusted o/w NE by ultra-sonication. Improved transparency and stability of NE were observed with increasing sonication time. Best stability was obtained after 20 min sonication and particle size of the multilayered NE was measured in the range of 90.8–167.8 nm. Transmission electron microscopy confirmed the progressive layering of nanosized NE. Higher magnitude of zeta potential (i.e., 22.9 to 31.01 mV) confirmed higher stability and coating of alginate layer over NE surface for the period of 3 months. NE showed strategic release pattern when assessed in vitro in various simulated biological fluids of GIT in timed pattern. Multilayered NE showed significant modulation in liver function test (ALT, ALP, AST, TBIL, DBIL, and liver glycogen) and serum cytokines (TNF-α, IL-6, IL-10, and IL-β) when assessed in vivo in galactosamine-lipopolysaccharide intoxicated mice. In conclusion, the andrographolide engrained multi-layered NE enhanced the solubility, stability and henceforth assured the increased availability in simulated biological fluids. The in vivo study exhibited the significantly improved hepatoprotection by andrographolide when delivered in stable multi-layered NE carrier systems.  相似文献   

19.
Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.  相似文献   

20.
Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163–165 cps for hydrogel containing microsize drug particles and 171–173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号