共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the study was to develop an amorphous solid dispersion (ASD) for an insoluble compound X by hot melt extrusion (HME) process. The focus was to identify material-sparing approaches to develop bioavailable and stable ASD including scale up of HME process using minimal drug. Mixtures of compound X and polymers with and without surfactants or pH modifiers were evaluated by hot stage microscopy (HSM), polarized light microscopy (PLM), and modulated differential scanning calorimetry (mDSC), which enabled systematic selection of ASD components. Formulation blends of compound X with PVP K12 and PVP VA64 polymers were extruded through a 9-mm twin screw mini-extruder. Physical characterization of extrudates by PLM, XRPD, and mDSC indicated formation of single-phase ASD’s. Accelerated stability testing was performed that allowed rapid selection of stable ASD’s and suitable packaging configurations. Dissolution testing by a discriminating two-step non-sink dissolution method showed 70–80% drug release from prototype ASD’s, which was around twofold higher compared to crystalline tablet formulations. The in vivo pharmacokinetic study in dogs showed that bioavailability from ASD of compound X with PVP VA64 was four times higher compared to crystalline tablet formulations. The HME process was scaled up from lab scale to clinical scale using volumetric scale up approach and scale-independent-specific energy parameter. The present study demonstrated systematic development of ASD dosage form and scale up of HME process to clinical scale using minimal drug (~500 g), which allowed successful clinical batch manufacture of enabled formulation within 7 months. 相似文献
2.
Abbe Haser Brian Haight Andreas Berghaus Augie Machado Charlie Martin Feng Zhang 《AAPS PharmSciTech》2018,19(7):2818-2827
Chemical degradation of drug substances remains a major drawback of extrusion. Larger-scale extrusion equipment has advantages over smaller equipment due to deeper flight elements and added flexibility in terms of screw design, unit operations, and residence time. In a previous study, we extruded a meloxicam-copovidone amorphous solid dispersion (ASD) on a Nano-16 extruder and achieved 96.7% purity. The purpose of this study is to introduce a strategy for scaling the process to an extruder with dissimilar geometry and to investigate the impact on the purity of the ASD. The formulation previously optimized on the Nano-16, 10:90 meloxicam and copovidone, was used for scale-up. Our approach to scale-up to the ZSE-18, utilized specific mechanical energy input and degree of fill from the Nano-16. Vacuum was added to prevent hydrolysis of meloxicam. Downstream feeding and micronization of meloxicam were introduced to reduce the residence time. In-line monitoring of the solubilization of meloxicam was monitored with a UV probe positioned at the die. We were able to achieve the same purity of meloxicam with the Micro-18 as we achieved with Nano-16. When process conditions alone were not sufficient, meglumine was added to further stabilize meloxicam. In addition to the chemical stability advantage that meglumine provided, we also observed solubility enhancement which allowed for an increase in drug loading to 20% while maintaining 100% purity. 相似文献
3.
The understanding of amorphous solid dispersions has grown significantly in the past decade. This is evident from the number of approved commercial amorphous solid dispersion products. While amorphous formulation is considered an enabling technology, it has become the norm for formulating poorly soluble compounds. Despite this success, improvements can still be made that enable early development formulation decisions, to develop a rationale for selecting a manufacturing process, to overcome degradation and phase separation during processing, to help achieve physical stability during storage, and to optimize dissolution behavior. The purpose of this literature review is to present recently reported strategies for improving the development and performance of ASDs. The benefits and limitations of each strategy as well as recent relevant case studies will be presented in this review. The strategies are presented from three different aspects: (a) prediction techniques that enable formulation decisions, (b) manufacturing considerations that help produce physically and chemically stable ASDs, and (c) formulation strategies that enhance dissolution behavior. 相似文献
4.
Justin S. LaFountaine Leena Kumari Prasad Chris Brough Dave A. Miller James W. McGinity Robert O. WilliamsIII 《AAPS PharmSciTech》2016,17(1):120-132
Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output. 相似文献
5.
Maniruzzaman Mohammed Islam Muhammad T. Halsey Sheelagh Amin Devyani Douroumis Dennis 《AAPS PharmSciTech》2016,17(1):191-199
AAPS PharmSciTech - The aim of the study was to investigate the effect of novel polymer/lipid formulations on the dissolution rates of the water insoluble indomethacin (INM), co-processed by hot... 相似文献
6.
Ajinkya M. Bhagurkar Muralikrishnan Angamuthu Hemlata Patil Roshan V. Tiwari Abhijeet Maurya Seyed Meysam Hashemnejad Santanu Kundu S. Narasimha Murthy Michael A. Repka 《AAPS PharmSciTech》2016,17(1):158-166
Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids. 相似文献
7.
Abhishek Juluri Carmen Popescu Leon Zhou Reena N. Murthy Vanaja K. Gowda Chetan Kumar P Manjeet B. Pimparade Michael A. Repka S. Narasimha Murthy 《AAPS PharmSciTech》2016,17(1):99-105
The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218–220°C and CA at 230–232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ~threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form. 相似文献
8.
The objective of the present study was to define a systematic approach to design and prepare solid dispersions of poorly water-soluble drug. The systematic approach can be defined in four phases. In the first phase, glass forming ability is assessed, and in the second phase, probable excipients are screened. The screened excipients are evaluated (third phase) for glass transition temperatures (T g) and miscibility studies according to Florey–Huggins interaction parameter. The predicted excipients are used to prepare the solid dispersion and evaluated for T g and any interactions using Fourier transfer infrared studies (fourth phase), and the findings are correlated with phase three predictions. For this investigation, cilostazol (CIL) was selected as model drug, which was classified as a poor glass former. As per the physical chemical properties of CIL, ten excipients, both polymeric and non-polymeric, were selected and screened. Out of these, povidone, copovidone, hypromellose and Eudragit EPO were found theoretically miscible with CIL. After going through phase 2 to phase 4, only povidone, copovidone and hypromellose were confirmed as polymer of choice for preparing the solid dispersion of CIL with a prediction of better physical solid-state stability on the basis of good miscibility between drug and carrier. 相似文献
9.
The use of amorphous solid dispersions to improve the bioavailability of active ingredients from the BCS II and IV classifications continues to gain interest in the pharmaceutical industry. Over the last decade, methods for generating amorphous solid dispersions have been well established in commercially available products and in the literature. However, the amorphous solid dispersions manufactured by different technologies differ in many aspects, primarily chemical stability, physical stability, and performance, both in vitro and in vivo. This review analyzes the impact of manufacturing methods on those properties of amorphous solid dispersions. For example, the chemical stability of drugs and polymers can be influenced by differences in the level of thermal exposure during fusion-based and solvent-based processes. The physical stability of amorphous content varies according to the thermal history, particle morphology, and nucleation process of amorphous solid dispersions produced by different methods. The in vitro and in vivo performance of amorphous formulations are also affected by differences in particle morphology and in the molecular interactions caused by the manufacturing method. Additionally, we describe the mechanism of manufacturing methods and the thermodynamic theories that relate to amorphous formulations. 相似文献
10.
Betulinic acid (BA), a novel natural product with antimelanoma activity, has poor aqueous solubility (<0.1 μg/mL) and therefore exhibits poor bioavailability. The purpose of this study was to explore the feasibility of preparing BA solid dispersions (BA-SDs) with hydrophilic polymers to enhance the aqueous solubility of BA. Melt-quenched solid dispersions (MQ-SDs) of BA were prepared at various ratios with the hydrophilic polymers including Soluplus, HPMCAS-HF, Kollidon VA64, Kollidon K90, and Eudragit RLPO. BA was found to be miscible in all polymers at a 1:4 (w/w) ratio by modulated differential scanning calorimetry (MDSC). BA/Soluplus MQ-SD exhibited the highest solubility in simulated body fluids followed by BA/Kollidon VA64 MQ-SD. The MQ-SDs of BA/Soluplus, BA/HPMCAS-HF, and BA/Kollidon VA64 were found to be amorphous as indicated by X-ray powder diffraction (XRPD) studies. Fourier transform infra-red (FT-IR) studies indicated molecular interactions between BA and Soluplus. Our preliminary screening of polymers indicates that Soluplus and Kollidon VA64 exhibit the greatest potential to form BA-SDs.
Electronic supplementary material
The online version of this article (doi:10.1208/s12249-014-0220-x) contains supplementary material, which is available to authorized users.KEY WORDS: betulinic acid, DSC, FT-IR, HPLC, SEM, solid dispersions, solubility, XRPD 相似文献11.
Thermal processing of amorphous solid dispersions continues to gain interest in the pharmaceutical industry, as evident by several recently approved commercial products. Still, a number of pharmaceutical polymer carriers exhibit thermal or viscoelastic limitations in thermal processing, especially at smaller scales. Additionally, active pharmaceutical ingredients with high melting points and/or that are thermally labile present their own specific challenges. This review will outline a number of formulation and process-driven strategies to enable thermal processing of challenging compositions. These include the use of traditional plasticizers and surfactants, temporary plasticizers utilizing sub- or supercritical carbon dioxide, designer polymers tailored for hot-melt extrusion processing, and KinetiSol® Dispersing technology. Recent case studies of each strategy will be described along with potential benefits and limitations. 相似文献
12.
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.KEY WORDS: DSC, Flory–Huggins theory, hot-melt extrusion, thermal processing 相似文献
13.
Matthew S. Lamm James DiNunzio Nazia N. Khawaja Louis S. Crocker Anthony Pecora 《AAPS PharmSciTech》2016,17(1):89-98
Atomic force microscopy (AFM) and modulated differential scanning calorimetry (mDSC) were used to evaluate the extent of mixing of a hot melt extrusion process for producing solid dispersions of copovidone and D-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000). In addition to composition, extrusion process parameters of screw speed and thermal quench rate were varied. The data indicated that for 10% TPGS and 300 rpm screw speed, the mixing was insufficient to yield a single-phase amorphous material. AFM images of the extrudate cross section for air-cooled material indicate round domains 200 to 700 nm in diameter without any observed alignment resulting from the extrusion whereas domains in extrudate subjected to chilled rolls were elliptical in shape with uniform orientation. Thermal analysis indicated that the domains were predominantly semi-crystalline TPGS. For 10% TPGS and 600 rpm screw speed, AFM and mDSC data were consistent with that of a single-phase amorphous material for both thermal quench rates examined. When the TPGS concentration was reduced to 5%, a single-phase amorphous material was achieved for all conditions even the slowest screw speed studied (150 rpm). 相似文献
14.
15.
The purpose of this research was to prepare and evaluate sustained release mucoadhesive tablets of Itraconazole. It is practically
insoluble in aqueous fluids hence its solid dispersion with Eudragit E100 was prepared by spray drying. This was formulated
in matrix of hydrophilic mucoadhesive polymers Carbopol 934P (CP) and Methocel K4M (HPMC). The formulation was optimized using
a 32 factorial design. Amounts of CP and HPMC were taken as formulation variables for optimizing response variables i.e. mucoadhesion
and dissolution parameters. The optimized mucoadhesive formulation was orally administered to albino rabbits, and blood samples
collected were used to determine pharmacokinetic parameters. The solid dispersion markedly enhanced the dissolution rate of
itraconazole. The bioadhesive strength of formulation was found to vary linearly with increasing amount of both polymers.
Formulations exhibited drug release fitting Peppas model with value of n ranging from 0.61 to 1.18. Optimum combination of polymers was arrived at which provided adequate bioadhesive strength and
fairly regulated release profile. The experimental and predicted results for optimum formulations were found to be in close
agreement. The formulation showed C
max 1898 ± 75.23 ng/ml, t
max of the formulation was 2 h and AUC was observed to be 28604.9 ng h/ml 相似文献
16.
For a drug with low bioavailability, a matrix tablet with liquid permeation enhancer (Labrasol®) was formulated. Factorial design was used to evaluate the effect of three formulation factors: drug percentage, polymer type (Methocel® K100M or Eudragit® L 100-55), and tablet binder percentage (Plasdone® S-630) on tablet characteristics. Tablets were prepared by direct compression and characterized. Compressibility index values ranged between 15.90% and 29.87% and tablet hardness values from 7.8 to 29.78 Kp. Eudragit®-containing formulations had better compressibility index values with higher tablet hardness. Time for 75% of drug release (T 75) was calculated, and formulations containing Eudragit® L 100-55 had faster release rates than tablet formulations with Methocel® K100M. Formulations with Methocel® K100M fit well in the Higuchi model as indicated by their R 2 values (>0.98). Among all the formulation factors studied, polymer type displayed the highest and statistically significant effect on compressibility index, tablet hardness, and dissolution rate. Statistical design helped in better understanding the effect of formulation factors on tablet characteristics important for designing formulations with desired characteristics. 相似文献
17.
Terrick Andey Apurva Patel Srujan Marepally Mahavir Chougule Shawn D. Spencer Arun K. Rishi Mandip Singh 《PloS one》2016,11(1)
Purpose
To formulate hydroxypropyl methylcellulose-stabilized self-emulsifying solid dispersible carriers of noscapine to enhance oral bioavailability.Methods
Formulation of noscapine (Nos) self-emulsifying solid dispersible microparticles (SESDs) was afforded by emulsification using an optimized formula of Labrafil M1944, Tween-80, and Labrasol followed by spray-drying with hydroxypropyl methylcellulose (HPMC), with and without mannosamine (Mann-Nos_SESDs and Nos_SESDs respectively); self-microemulsifying liquid dispersions (SMEDDs) with and without mannosamine (Mann-Nos_SMEDDs and Nos_SMEDDs respectively) were also prepared. SMEDDs and SESDs were characterized for size, polydispersity, surface charge, entrapment efficiency, in vitro permeability, in vitro release kinetics, and oral pharmacokinetics in Sprague-Dawley rats (10 mg/kg p.o). The antitumor efficacy of Mann-Nos_SESDs on the basis of chemosensitization to cisplatin (2.0 mg/kg, IV) was investigated in a chemorefractory lung tumor Nu/Nu mouse model up to a maximal oral dose of 300 mg/kg.Results
The oil/surfactant/co-surfactant mixture of Labrafil M1944, Tween-80, and Labrasol optimized at weight ratios of 62.8:9.30:27.90% produced stable self-microemulsifying dispersions (SMEDDs) at a SMEDD to water ratio of 1–3:7–9 parts by weight. SMEDDs had hydrodynamic diameters between 231 and 246 nm; surface charges ranged from -16.50 to -18.7 mV; and entrapment efficiencies were between 32 and 35%. SESDs ranged in size between 5.84 and 6.60 μm with surface charges from -10.62 to -12.40 mV and entrapment efficiencies of 30.96±4.66 and 32.05±3.72% (Nos_SESDs and Mann-Nos_SESDs respectively). Mann-Nos_SESDs exhibited saturating uptake across Caco-2 monolayers (Papp = 4.94±0.18 × 10−6 cm/s), with controlled release of 50% of Nos in 6 hr at pH 6.8 following Higuchi kinetics. Mann-Nos_ SESDs was 40% more bioavailable compared to Nos_SESDs; and was effective in sensitizing H1650 SP cells to Cisplatin in vitro and in an orthotopic lung tumor model of H1650 SP origin.Conclusions
Mannosylated noscapine self-emulsifying solid dispersions (Mann-Nos_SESDs) are bioavailable and potentiate the antineoplastic effect of cisplatin-based chemotherapy in cisplatin-resistant NSCLC. 相似文献18.
Roxithromycin is a poorly soluble antibacterial drug. The aim of this study was to prepare and characterize an amorphous form of roxithromycin. The amorphous form was prepared by desolvation of its chloroform solvate, and by quench cooling a melt of the crystalline monohydrated solid. The X-ray powder diffraction pattern of the desolvated chloroform solvate was indistinguishable from that of the glass prepared by melting, which indicated that it was amorphous. The roxithromycin glass was determined to be a fragile glass, but due to its high Kauzmann temperature (approximately 8°C), it should remain fairly stable upon refrigeration or even at room temperature. It was also determined that this glass remains stable in the presence of moisture with no indication of crystallization. 相似文献
19.
Xingyou Ye Hemlata Patil Xin Feng Roshan V. Tiwari Jiannan Lu Andreas Gryczke Karl Kolter Nigel Langley Soumyajit Majumdar Dipesh Neupane Sanjay R. Mishra Michael A. Repka 《AAPS PharmSciTech》2016,17(1):78-88
Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs. 相似文献
20.
Roshan V. Tiwari Ashley N. Polk Hemlata Patil Xingyou Ye Manjeet B. Pimparade Michael A. Repka 《AAPS PharmSciTech》2017,18(2):341-348
Developing a pediatric oral formulation with an age-appropriate dosage form and taste masking of naturally bitter active pharmaceutical ingredients (APIs) are key challenges for formulation scientists. Several techniques are used for taste masking of bitter APIs to improve formulation palatability; however, not all the techniques are applicable to pediatric dosage forms because of the limitations on the kind and concentration of the excipients that can be used. Hot-melt extrusion (HME) technology is used successfully for taste masking of bitter APIs and overcomes some of the limitations of the existing taste-masking techniques. Likewise, analytical taste assessment is an important quality control parameter evaluated by several in vivo and in vitro methods, such as the human taste panel, electrophysiological methods, electronic sensor, and animal preference tests to aid in selecting a taste-masked formulation. However, the most appropriate in vivo method to assess the taste-masking efficacy of pediatric formulations remains unknown because it is not known to what extent the human taste panel/electronic tongue can predict the palatability in the pediatric patients. The purpose of this study was to develop taste-masked caffeine citrate extrudates via HME and to demonstrate the wide applicability of a single bottle-test rat model to record and compare the volume consumed of the taste-masked solutions to that of the pure API. Thus, this rat model can be considered as a low-cost alternative taste-assessment method to the most commonly used expensive human taste panel/electronic tongue method for pediatric formulations. 相似文献