首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The objective of the present investigation was to reduce the bitterness with improved dissolution, in acidic medium (pH 1.2), of mefloquine hydrochloride (MFL). Microparticles were prepared by coacervation method using Eudragit E (EE) as polymer and sodium hydroxide as precipitant. A 32 full factorial design was used for optimization wherein the drug concentration (A) and polymer concentration (B) were selected as independent variables and the bitterness score, particle size and dissolution at various pH were selected as the dependent variables. The desirability function approach has been employed in order to find the best compromise between the different experimental responses. The model is further cross validated for bias. The optimized microparticles were characterized by FT-IR, DSC, XRPD and SEM. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the reduced bitterness of MFL can be obtained by controlling the dissolution of microparticles at pH 6.8 and increasing the EE concentration. The increase in polymer concentration leads to reduction in dissolution of microparticles at pH > 5 due to its insolubility. However the dissolution studies at pH 1.2 demonstrated enhanced dissolution of MFL from microparticles might be due to the high porosity of the microparticles, hydrophilic nature of the EE, and improved wettability, provided by the dissolved EE. The bitterness score of microparticles was decreased to zero compared to 3+ of pure ARM. In conclusion the bitterness of MFL was reduced with improved dissolution at acidic pH.  相似文献   

2.
Optimization of a lyophilized fast-disintegrating tablet (LFDT) formulation containing naratriptan hydrochloride, an antimigraine drug, was the foremost objective of the study, aiming in achieving fast headache pain relief. The Design-Expert® v10 software was used to generate formulations using D-optimal mixture design with four components: gelatin (X1), hydrolyzed gelatin (X2), glycine (X3), and mannitol (X4) of total solid material (TSM) w/w. The effect of the relative proportion of each component was determined on friability (Y1), hardness (Y2), and in vitro disintegration time (Y3), which was then applied for formulation optimization. In addition, their effect on tablet porosity was determined via scanning electron microscopy (SEM). Drug-excipient interaction was evaluated using differential scanning calorimetry (DSC). A comparative dissolution study against the conventional tablets was studied. Accelerated stability study was carried out in (Al/Al) and (Al/PVC) blister packs. An in vivo pharmacokinetic study was carried out to compare the optimized formulation and the conventional tablets. The optimized formulation’s responses were 0.30%, 3.4 kg, and 6.12 s for Y1, Y2, and Y3, respectively. No drug-excipient interaction was specified via DSC. The optimized formulation exhibited porous structure as determined via SEM. Dissolution study demonstrated complete dissolution within 1.5 min. Study indicated stability for 78 months in (Al/Al) blister packs. In vivo pharmacokinetic study demonstrated that Cmax, AUClast, and AUCinf were significantly higher for the developed formulation. As well, the Tmax was 1 h earlier than that of convenient tablet. An LFDT would achieve a faster onset of action for naratriptan compared to other formulations.  相似文献   

3.
Floating pH-sensitive chitosan hydrogels containing metronidazole were developed for the eradication of Helicobacter pylori from the stomach. Hydrogels were prepared by crosslinking medium or high molecular weight chitosan in lyophilized solutions containing metronidazole using either citrate or tripolyphosphate (TPP) salts at 1% or 2% concentration. A 23 factorial design was developed to study the influence of formulation parameters on the physical characteristics of the prepared hydrogels. The interaction between hydrogel components was investigated. The morphology of the prepared hydrogels was inspected and their percentage swelling, release pattern, and moisture content were evaluated. The results revealed the absence of interaction between hydrogel components and their highly porous structure. Percentage swelling of the hydrogels was much higher, and drug release was faster in gastric pH compared with intestinal pH. The formula prepared using 2% high molecular weight chitosan and 2% TPP significantly swelled (700%) within the first 4 h and released the loaded drug over a period of 24 h. Its moisture content was not affected by storage at high relative humidity. Therefore, this formula was selected to be tested in dogs for its gastric retention (using X-ray radiography) and efficacy in the eradication of H. pylori (using histopathological and microbiological examination). The results revealed that the prepared hydrogel formula was retained in dog stomach for at least 48 h, and it was more effective against H. pylori than the commercially available oral metronidazole tablets (Flagyl®).  相似文献   

4.
The present investigation concerns with the development and optimization of an in situ forming formulation using 33 full factorial design experimentation. Metformin, an antidiabetic drug with upper part of gastrointestinal tract as absorption window was used as a model drug. The formulations were designed with an objective to retain in stomach for an extended time period. The effect of three independent factors—concentrations of sodium alginate (X 1), gellan gum (X 2), and metformin (X 3) on in vitro drug release were used to characterize and optimize the formulation. Five dependent variables—release exponent (Y 1), dissolution efficiency (Y 2), drug release at 30 min (Y 3), 210 min (Y 4), and 480 min (Y 5) were considered as optimization factors. The data were statistically analyzed using ANOVA, and a p < 0.05 was considered statistically significant. Three dimensional surface response plots were drawn to evaluate the interaction of independent variables on the chosen dependent variables. Of the prepared 27 formulations, the responses exhibited by batch F17 containing medium level sodium alginate (X 1), low level gellan (X 2), and medium level metformin (X 3) were similar to the predicted responses.  相似文献   

5.
Diosgenin (DSG), a well-known steroid sapogenin derived from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright, has a variety of bioactivities. However, it shows low oral bioavailability due to poor aqueous solubility and strong hydrophobicity. The present study aimed to develop DSG nanocrystals to increase the dissolution and then improve the oral bioavailability and biopharmaceutical properties of DSG. DSG nanocrystals were prepared by the media milling method using a combination of pluronic F127 and sodium dodecyl sulfate as surface stabilizers. The physicochemical properties of the optimal DSG nanocrystals were characterized using their particle size distribution, morphology, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy data, and solubility and dissolution test results. Pharmacokinetic studies of the DSG coarse suspension and its nanocrystals were performed in rats. The particle size and polydispersity index of DSG nanocrystals were 229.0?±?3.7 nm and 0.163?±?0.064, respectively. DSG retained its original crystalline state during the manufacturing process, and its chemical structure was not compromised by the nanonizing process. The dissolution rate of the freeze-dried DSG nanocrystals was significantly improved in comparison with the original DSG. The pharmacokinetic studies showed that the AUC0–72h and C max of DSG nanocrystals increased markedly (p?<?0.01) in comparison with the DSG coarse suspension by about 2.55- and 2.01-fold, respectively. The use of optimized nanocrystals is a good and efficient strategy for oral administration of DSG due to the increased dissolution rate and oral bioavailability of DSG nanocrystals.  相似文献   

6.
In order to improve the bioavailability of the antidepressant drug, venlafaxine hydrochloride, in situ mucoadhesive thermoreversible gel, was formulated using Lutrol F127 (18%) as a thermo gelling polymer. Mucoadhesion was modulated by trying carbopol 934, PVP K30, HPMC K4M, sodium alginate, tamarind seed gum, and carrageenan as mucoadhesive polymers. Results revealed that as the concentration of mucoadhesive polymer increased the mucoadhesive strength increased but gelation temperature decreased. Formulation was optimized on the basis of clarity, pH, gelation temperature, mucoadhesive strength, gel strength, viscosity, drug content, diffusion through sheep nasal mucosa, histopathological evaluation of mucosa, and pharmacodynamic study in rats. Final formulation T5 containing 18% Lutrol F127 and 0.3% PVP K30 was considered as an optimized formulation. T5 released 97.86 ± 0.073% drug in 150 min with a flux of 0.1545 mg cm−2 min−1 and gelation temperature 31.17 ± 0.30°C. Histopathological evaluation of nasal mucosa revealed that T5 formulation was safe for nasal administration as it caused no damage to nasal epithelium. From the results of pharmacodynamic study, mainly forced swim test (FST), it was concluded that venlafaxine hydrochloride was more effective as an antidepressant by nasal route as in situ gel nasal drops in comparison to oral administration of equivalent dose.Key words: lutrol F127, mucoadhesive, nasal in situ gel, thermoreversible, venlafaxine HCl  相似文献   

7.
In the present study, the aim was to optimize an orodispersible formulation of indomethacin using a combined approach of subliming agent and superdisintegrant. The tablets were made by non-aqueous wet granulation technique with superdisintegrant incorporated both intragranularly and extragranularly. A 23 factorial design was used to investigate the effects amount of subliming agents namely camphor and ammonium bicarbonate and taste masking and soothening hydrophilic agent mannitol as independent variables and disintegration time and crushing strength as dependent responses. The volatilization time of eight hours at 50°C was optimized by conducting solid-state kinetic studies of optimized formulations. Optimized orodispersible tablets were evaluated for wetting time, water absorption ratio, porosity and in vitro and in vivo disintegration tests. Results show that higher levels of camphor and mannitol and a lower level of ammonium bicarbonate is desirable for orodispersion. Scanning electron microscopy (SEM) revealed the porous surface morphology and kinetic digital images substantiated the orodispersible property. Differential Scanning Calorimetry (DSC) studies exhibited physiochemical compatibility between indomethacin and various excipients used in the tablet formulation. Stability studies carried out as per ICH Q1 A guidelines suggested the stable formulations for the tested time period of 6 months. The systematic approach of using subliming and disintegrating agents helped in achieving a stable, optimized orodispersible formulation, which could be industrially viable.  相似文献   

8.
The objective was to investigate the suitable polymeric films for the development of diltiazem hydrochloride (diltiazem HCl) transdermal drug delivery systems. Hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) were used as hydrophilic and hydrophobic film formers, respectively. Effects of HPMC/EC ratios and plasticizers on mechanical properties of free films were studied. Effects of HPMC/EC ratios on moisture uptake, in vitro release and permeation through pig ear skin of diltiazem HCl films were evaluated. Influence of enhancers including isopropyl myristate (IPM), isopropyl palmitate (IPP), N-methyl-2-pyrrolidone, oleic acid, polyethylene glycol 400, propylene glycol, and Tween80 on permeation was evaluated. It was found that addition of EC into HPMC film produced lower ultimate tensile strength, percent elongation at break and Young’s modulus, however, addition of EC up to 60% resulted in too hard film. Plasticization with dibutyl phthalate (DBP) produced higher strength but lower elongation as compared to triethyl citrate. The moisture uptake and initial release rates (0–1 h) of diltiazem HCl films decreased with increasing the EC ratio. Diltiazem HCl films (10:0, 8:2 and 6:4 HPMC/EC) were studied for permeation because of the higher release rate. The 10:0 and 8:2 HPMC/EC films showed the comparable permeation-time profiles, and had higher flux values and shorter lag time as compared to 6:4 HPMC/EC film. Addition of IPM, IPP or Tween80 could enhance the fluxes for approx. three times while Tween80 also shorten the lag time. In conclusion, the film composed of 8:2 HPMC/EC, 30% DBP and 10% IPM, IPP or Tween80 loaded with 25% diltiazem HCl should be selected for manufacturing transdermal patch by using a suitable adhesive layer and backing membrane. Further in vitro permeation and in vivo performance studies are required.  相似文献   

9.
The aim of this study was to prepare bi-layer tablet of Metoclopramide Hydrochloride (MTH) and Ibuprofen (IB) for the effective treatment of migraine. MTH and IB were formulated as immediate and sustained release layer respectively. MTH was formulated as immediate release layer by using various disintegrants like Ac-Di-Sol, Polyplasdone XL, Explotab, Agar and Gellan Gum. Treated form of gellan gum and agar was prepared and compared for their disintegrant efficiency with other disintegrants. IB was formulated as sustained release layer using hydrophilic matrix (hydroxypropylmethylcellulose [HPMC K4M]). The effect of concentration of hydrophilic matrix (HPMC K4M), binder (polyvinylpyrollidone [PVP K30]) and buffer (sodium bicarbonate) on IB release was studied. The dissolution study of sustained release layer showed that an increasing amount of HPMC or PVP K30 results in reduced IB release. The inclusion of buffer (sodium bicarbonate) enhanced the release of IB from sustained release layer. The rational for formulation of bi-layer tablet of these two drugs in combination was (1) MTH increases the absorption of acidic non-steroidal anti-inflammatory drug (NSAID) by increasing gastric motility. So sequential release of MTH (as immediate release) and IB (as sustained release) was suitable for treatment of migraine. (2) MTH was degraded when prolonged contact with acidic NSAID. Bi-layer tablet was suitable for preventing direct contact of these two drugs and thus to maximize the efficacy of combination of two drugs for migraine.  相似文献   

10.
Drugs that have narrow absorption window in the gastrointestinal tract (GIT) will have poor absorption. For these drugs, gastroretentive drug delivery systems offer the advantage in prolonging the gastric emptying time. Swellable, floating, and sustained release tablets are developed by using a combination of hydrophilic polymer (hydroxypropyl methylcellulose), swelling agents (crospovidone, sodium starch glycolate, and croscarmelose sodium) and effervescent substance (sodium bicarbonate). Formulations are evaluated for percentage swelling, in vitro drug release, floating lag time, total duration of floating, and mean residence time (MRT) in the stomach. The drug release of optimized formulation follows the Higuchi kinetic model, and the mechanism is found to be non-Fickian/anomalous according to Krosmeyer–Peppas (n value is 0.68). The similarity factor (f 2) is found to be 26.17 for the optimized formulation, which the release is not similar to that of marketed produced (CIFRAN OD®). In vivo nature of the tablet at different time intervals is observed in the radiographic pictures of the healthy volunteers and MRT in the stomach is found to be 320?±?48.99 min (n?=?6). A combination of HPMC K100M, crospovidone, and sodium carbonate shows the good swelling, drug release, and floating characters than the CIFRAN OD®.  相似文献   

11.
The objective of present study was to develop a gastroretentive drug delivery system of propranolol hydrochloride. The biggest problem in oral drug delivery is low and erratic drug bioavailability. The ability of various polymers to retain the drug when used in different concentrations was investigated. Hydroxypropyl methylcellulose (HPMC) K4 M, HPMC E 15 LV, hydroxypropyl cellulose (HPC; Klucel HF), xanthan gum, and sodium alginate (Keltose) were evaluated for their gel-forming abilities. One of the disadvantages in using propranolol is extensive first pass metabolism of drug and only 25% reaches systemic circulation. The bioavailability of propranolol increases in presence of food. Also, the absorption of various drugs such as propranolol through P-glycoprotein (P-gp) efflux transporter is low and erratic. The density of P-gp increases toward the distal part of the gastrointestinal tract (GIT). Therefore, it was decided to formulate floating tablet of propranolol so that it remains in the upper part of GIT for longer time. They were evaluated for physical properties, in vitro release as well as in vivo behavior. In preliminary trials, tablets formulated with HPC, sodium alginate, and HPMC E 15 LV failed to produce matrix of required strength, whereas formulation containing xanthan gum showed good drug retaining abilities but floating abilities were found to be poor. Finally, floating tablets were formulated with HPMC K4 M and HPC.  相似文献   

12.
Over the past two decades, there has been a notable rise in the use of antipsychotic drugs, as they are used to treat an increasing number of neuropsychiatric disorders. This rise has been led predominantly by greater use of the second generation antipsychotic (SGA) drugs, which have a low incidence of neurological side-effects. However, many SGAs cause metabolic dysregulation, including glucose intolerance and insulin resistance, thus increasing the risk of cardiometabolic disorders. The metabolic effects of the novel SGA lurasidone, which was approved by the Food and Drug Administration in 2010, remain largely unknown. As rodent models accurately predict the metabolic effects of SGAs in humans, the aim of the present study was to use sophisticated animal models of glucose tolerance and insulin resistance to measure the metabolic effects of lurasidone. In parallel, we compared the SGA olanzapine, which has established metabolic effects. Adult female rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (10.0 mg/kg, s.c.) and subjected to the glucose tolerance test (GTT). Separate groups of rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (1.5 and 15 mg/kg, s.c.) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC). Compared to vehicle treated animals, lurasidone caused mild glucose intolerance in the GTT with a single dose, but there was no effect on insulin resistance in the GTT, measured by HOMA-IR. The HIEC also confirmed no effect of lurasidone on insulin resistance. In contrast, olanzapine demonstrated dose-dependent and potent glucose intolerance, and insulin resistance in both tests. Thus, in preclinical models, lurasidone demonstrates mild metabolic liability compared to existing SGAs such as olanzapine. However, confirmation of these effects in humans with equivalent tests should be confirmed.  相似文献   

13.
A nondisintegrating, floating asymmetric membrane capsule (FAMC) was developed to achieve site-specific osmotic flow of a highly water-soluble drug, ranitidine hydrochloride (RHCl), in a controlled manner. Solubility suppression of RHCl was achieved by the common ion effect, using optimized coated sodium chloride as a formulation component. The capsular wall of FAMC was prepared by the phase inversion process wherein the polymeric membrane was precipitated on glass pins by dipping them in a solution of cellulose acetate followed by quenching. Central composite design was utilized to investigate the influence of independent variables, namely, level(s) of membrane former, pore former, and osmogen, on percent cumulative drug release (response). The release mechanism of RHCl through FAMC was confirmed as osmotic pumping. The asymmetry of the membrane was characterized by scanning electron microscopy that revealed a dense nonporous outer region of membrane supported by an inner porous region. Differential scanning calorimetry indicated no incompatibility between the drug and excipients. In vitro drug release in three biorelevant media, pH 2.5 (low fed), pH 4.5 (intermediate fed), and pH 6.5 (high fed), demonstrated pH-independent release of RHCl (P > 0.05). Floating ability for 12 h of the optimized FAMC9 was visually examined during the in vitro release studies that showed maximal drug release with zero-order kinetics (r2 = 0.9991). Thus, a novel osmotically regulated floating capsular system was developed for site-specific delivery of RHCl.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9870-8) contains supplementary material, which is available to authorized users.KEY WORDS: asymmetric membrane capsule, central composite design, floating system, osmotic delivery, ranitidine hydrochloride  相似文献   

14.
The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi’s model better than zero-order, first-order, and Hixson-Crowell’s model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell’s model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.KEY WORDS: cilostazol, controlled release, disintegration-mediated controlled release (DMCR), extreme vertices mixture design (EVMD), solid dispersion  相似文献   

15.
The study aim was concerned with formulation and evaluation of bioadhesive buccal drug delivery of tizanidine hydrochloride tablets, which is extensively metabolized by liver. The tablets were prepared by direct compression using bioadhesive polymers such as hydroxylpropyl methylcellulose K4M, sodium carboxymethyl cellulose alone, and a combination of these two polymers. In order to improve the permeation of drug, different permeation enhancers like beta-cyclodextrin (β-CD), hydroxylpropyl beta-cyclodextrin (HP-β-CD), and sodium deoxycholate (SDC) were added to the formulations. The β-CD and HP-β-CD were taken in 1:1 molar ratio to drug in formulations. Bioadhesion strength, ex vivo residence time, swelling, and in vitro dissolution studies and ex vivo permeation studies were performed. In vitro release of optimized bioadhesive buccal tablet was found to be non-Fickian. SDC was taken in 1%, 2%, and 3% w/w of the total tablet weight. Stability studies in natural saliva indicated that optimized formulation has good stability in human saliva. In vivo mucoadhesive behavior of optimized formulation was performed in five healthy male human volunteers and subjective parameters were evaluated.  相似文献   

16.
Management of moderate or severe chronic pain conditions is the burden of clinicians dealing with patients trying to improve their quality of life and diminish their suffering. Although not a new opioid, tramadol has been recently rediscovered and widely used; this may be due to its favorable chronic safety and dependence profiles together with its high potency. Tramadol is a centrally acting analgesic with half-life of ~6 h; therefore, it requires frequent dosing. It is freely soluble in water; hence, judicious selection of retarding formulations is necessary. The current study is focused on the innovation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal delivery system overcoming the defects of the conventional “patch” as carrier system for tramadol, ensuring its adequate delivery, along with the physicochemical evaluation of the designed formulations. Monolithic tramadol matrix films of chitosan, different types of Eudragit®, and binary mixtures of both were prepared. As a single-polymer film, chitosan film showed best properties except for somewhat high moisture uptake capacity, insufficient strength and rapid release, and permeation. Polymer blends were monitored in order to optimize both properties and performance. Promising results were obtained, with chitosan–Eudragit® NE30D (1:1) film showing the most desirable combined, sufficiently rapid as well as prolonged release and permeation profiles along with satisfactory organoleptic and physicochemical properties.  相似文献   

17.
Russian Journal of Bioorganic Chemistry - The aim of this work was to synthesize a diethyl phenylcarbamothioyl phosphonate (EThmP) and evaluate its biological activities. ThmP has been prepared...  相似文献   

18.
This study is an extrapolation of our previous one (part I) concerned with the formulation and physicochemical evaluation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal patch for tramadol hydrochloride. The current work is focused on bioadhesion, skin tolerability, and pharmacodynamic evaluation. Using naked rat skin, chitosan–Eudragit® NE30D (1:1) film attained best bioadhesive properties. During in vivo studies, it also showed a significantly extended analgesic effect compared to both oral formula and chitosan single polymeric film using the hot plate test method. All the polymeric films were skin tolerable for the intended period of application according to the Draize test. The success of our approach can proudly, positively contribute into the world of pain management and arguably push transdermal delivery to realize its great promise.  相似文献   

19.
20.
The purpose of this study was to prepare and evaluate a taste-masked berberine hydrochloride orally disintegrating tablet for enhanced patient compliance. Taste masking was performed by coating berberine hydrochloride with Eudragit E100 using a fluidized bed. It was found that microcapsules with a drug–polymer ratio of 1:0.8 masked the bitter taste obviously. The microcapsules were formulated to orally disintegrating tablets and the optimized tablets containing 6% (w/w) crospovidone XL and 15% (w/w) microcrystalline cellulose showed the fastest disintegration, within 25.5 s, and had a pleasant taste. The dissolution profiles revealed that the taste-masked orally disintegrating tablets released the drug faster than commercial tablets in the first 10 min. However, their dissolution profiles were very similar after 10 min. The prepared taste-masked tablets remained stable after 6 months of storage. The pharmacokinetics of the taste-masked and commercial tablets was evaluated in rabbits. The Cmax, Tmax, and AUC0−24 values were not significantly different from each other, suggesting that the taste-masked orally disintegrating tablets are bioequivalent to commercial tablets in rabbits. These tablets will enhance patient compliance by masking taste and improve patients’ quality of life.KEY WORDS: berberine hydrochloride, microcapsule, orally disintegrating tablet, taste masking  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号