首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anticonvulsant effect of ethanol against N-methyl-D-aspartic acid-(NMDA), kainic acid-, and picrotoxin-induced convulsions was studied in rats. Ethanol (2 g/kg, ip) offered protection against these agents, and it was most effective against picrotoxin and least effective against kainic acid. MK801, NMDA receptor antagonist, also provided protection against these agents. However, it was most effective against NMDA and least effective against kainic acid. Ineffective doses of MK801 (0.1 mg/kg, ip) and ethanol (0.5 g/kg, ip), when administered concurrently, had a facilitatory anticonvulsant effect, thereby providing protection against mortality following severe convulsions induced by NMDA or picrotoxin, but not against kainic acid. The protective effect of ethanol against NMDA- and kainic acid-induced neurotoxicity, in contrast to picrotoxin-induced toxicity, was not reversed by imidazodiazepine, Ro 15-4513, an ethanol antagonist. Furthermore, Ro 15-4513 did not produce any proconvulsant effect with NMDA or kainic acid. These findings suggested that the anticonvulsant actions of ethanol may be attributed to its ability to antagonize NMDA-mediated excitatory responses and facilitate the GABAergic transmission.  相似文献   

2.
A high level of hippocampal brain-derived neurotrophic factor (BDNF) in normally aged as compared with young rats suggests that it is important to maintain a considerable level of hippocampal BDNF during aging in order to keep normal hippocampal functions. To elucidate possible mechanisms of endogenous BDNF increase, changes in levels of BDNF were studied in the rat brain following systemic administration of various convulsant agents; excitotoxic glutamate agonists, NMDA, kainic acid and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA); GABA receptor antagonists, picrotoxin, pentylenetetrazole (PTZ) and lindane (gamma-hexachlorocyclohexane); and L-type voltage-dependent calcium channel agonist, BAY-K 8644. Kainic acid and AMPA, but not NMDA, caused remarkable increases in BDNF protein in the rat hippocampus and entorhinal cortex. Picrotoxin, PTZ and lindane stimulated BDNF production in the entorhinal cortex and also in the hippocampus of rats showing very severe convulsions. On the other hand, BAY-K 8644 treatment increased BDNF levels in the neocortex and entorhinal cortex. Maximal levels of BDNF protein were observed at 12--24 h, 8--16 h and 6 h following administration of kainic acid, PTZ and BAY-K 8644, respectively. Kainic acid stimulated BDNF synthesis in presynaptic hippocampal granule neurons, but not in postsynaptic neurons with its receptors, while PTZ and BAY-K 8644 produced the same effects in postsynaptic neurons in the entorhinal cortex (in granule neurons in the hippocampus) and in the whole cortex, respectively. Nifedipine inhibited almost completely BAY-K 8644, but not PTZ, effects. omega-Conotoxin GVIA and DCG-IV partially blocked kainic acid-induced enhancement of BDNF, indicating involvement of L-type and N-type voltage-dependent calcium channels, respectively. In addition, BDNF levels in the hippocampus of mice deficient in D-myo-inositol-1,4,5-triphosphate receptor gene were scarcely different from those in the same region of controls, suggesting little involvement of intracellular calcium increase through this receptor. BAY-K 8644, but not kainic acid or PTZ, stimulated the phosphorylation of cyclic AMP responsive element binding protein. Our results indicate convulsant-dependent stimulation of BDNF production and involvement of region-specific voltage-dependent calcium channels.  相似文献   

3.
Released TRH is inactivated by an ectopeptidase, pyroglutamyl aminopeptidase II (PPII). PPII expression and activity are stringently regulated in adenohypophysis, and in rat brain, during kindling stimulation that activates TRHergic neurons. To gain further insight into the possible regulation of PPII, we studied the effect of an acute intraperitoneal ethanol administration that affects TRH content and expression. PPII activity was determined by a fluorometric assay and PPII mRNA levels by semi-quantitative RT-PCR. Activity decreased in frontal cortex 1 h after ethanol injection and, after 6 h, in hippocampus, amygdala and n. accumbens. PPII mRNA levels decreased at 30 and 60 min in frontal cortex and n. accumbens while increased at longer times in these regions and, in hippocampus and hypothalamus. NMDA and GABA(A) receptors' agonists and antagonists were tested at 1 h (+/-ethanol) on PPII activity and mRNA levels, as well as on TRH content and its mRNA. In n. accumbens, PPII mRNA levels decreased by ethanol, MK-801, and muscimol while picrotoxin or NMDA reversed ethanol's inhibition. Ethanol decreased TRH content and increased TRH mRNA levels as MK-801 or muscimol did (NMDA or picrotoxin reverted the effect of ethanol). In frontal cortex, PPII activity was inhibited by ethanol, NMDA and MK-801 with ethanol; its mRNA levels were reduced by ethanol, MK-801 and muscimol (NMDA and picrotoxin reverted ethanol's inhibition). These results show that PPII expression and activity can be regulated in conditions where TRHergic neurons are modulated. Effects of ethanol on PPII mRNA levels as well as those of TRH and its mRNA may involve GABA or NMDA receptors in n. accumbens. Changes observed in frontal cortex suggest combined effects with stress. The response was region-specific in magnitude, tendency and kinetics. These results give further support for brain PPII regulation in conditions that modulate the activity of TRHergic neurons.  相似文献   

4.
5.
The potential role of excitatory amino acids in the regulation of brain corticosteroid receptors was examined using systemic administration of kainic acid. Administration of kainic acid (5, 10, and 15 mg/kg) to 24-h adrenalectomized rats that were killed 3 h later produced large, dose-related decreases in glucocorticoid receptors (GR) in hippocampus (23-63%), frontal cortex (22-76%), and striatum (41-49%). Kainic acid did not decrease hypothalamic GR. Hippocampal mineralocorticoid receptors (MR) were also markedly decreased (50-71%) by kainic acid. Significant decreases in corticosteroid receptors could be detected as soon as 1 h after kainic acid (10 mg/kg) administration. Decreases in hippocampal, cortical, and hypothalamic GR as well as hippocampal MR were observed 24 h after administration of kainic acid (10 mg/kg) to adrenalectomized rats. Kainic acid (10 mg/kg) also significantly decreased hippocampal GR and MR as well as GR in the other three brain regions when administered to adrenal-intact rats that were subsequently adrenalectomized and killed 48 h after drug administration. The kainic acid-induced decreases in hippocampal GR and MR binding were due to decreases in the maximum number of binding sites (Bmax) with no change in the apparent affinity (KD). Kainic acid when added in vitro did not displace the GR and MR radioligands from their respective receptors. These studies demonstrate that excitatory amino acids play a prominent role in the regulation of hippocampal corticosteroid receptors. In addition, the data indicate that noncorticosterone factors are involved in corticosteroid receptor plasticity.  相似文献   

6.
NMDA receptors are ionotropic glutamate receptors assembled of subunits of the NR1 and of the NR2 family (NR2A–NR2D). The subunit diversity largely affects the pharmacological properties of NMDA receptors and, hence, gives rise to receptor heterogeneity. As an overall result of studies on recombinant and native NMDA receptors, ethanol inhibits the function of receptors containing the subunits NR2A and/or NR2B to a greater extent than those containing NR2C or NR2D. For example, in rat cultured mesencephalic neurons, NR2C expression was developmentally increased, whereas expression of NR2A and NR2B was decreased. These changes coincided with a developmental loss of sensitivity of NMDA responses to ethanol and ifenprodil, a non-competitive NMDA receptor antagonist that shows selectivity for NR2B-containing receptors. Also in rat locus coeruleus neurons, the low ethanol sensitivity of somatic NMDA receptors could be explained by a prominent expression of NR2C. The inhibitory site of action for ethanol on the NMDA receptor is not yet known. Patch–clamp studies suggest a target site exposed to or only accessible from the extracellular environment. Apparently, amino acid residue Phe639, located in the TM3 domain of NR1, plays a crucial role in the inhibition of NMDA receptor function by ethanol. Since this phenylalanine site is common to all NMDA and non-NMDA receptor (AMPA/kainate receptor) subunits, this observation is consistent with accumulating evidence for a similar ethanol sensitivity of a variety of NMDA and non-NMDA receptors, but it cannot explain the differences in ethanol sensitivity observed with different NR2 subunits.  相似文献   

7.
It has been recently shown that the expression of various types of neurotransmitter receptors is not restricted to neurons but also observed in a majority of glial cells. However, their function in glial cells is not known well in both physiological and pathological conditions. Here, we investigated the role of glutamate receptor on c-fos gene expression in primary cultured and BV-2 microglia. Our results demonstrated that both c-fos mRNA and protein were dramatically induced following treatment with various glutamate receptor agonists (500muM); N-methyl-d-aspartic acid, kainic acid, (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and (RS)-3,5-dihydroxyphenylglycine. The responses were significantly suppressed by specific antagonists and also by calcium chelating agents EGTA and BAPTA-AM. Our results suggest that glutamate receptor activation regulates c-fos gene expression by modifying intracellular calcium levels in microglia. These findings might provide an insight in to understanding the function of microglial glutamate receptors in neuron-to-glial interaction under the excitotoxic conditions.  相似文献   

8.
The actions of ethanol on brain ligand-gated ion channels have important roles in the pathophysiology of alcohol-related neurodevelopmental disorders and fetal alcohol syndrome. Studies have shown that N-methyl-d-aspartate (NMDA) receptors are among the ligand-gated ion channels affected by prenatal ethanol exposure. We exposed pregnant dams to an ethanol-containing liquid diet that results in blood ethanol levels near the legal intoxication limit in most states (0.08%). Primary cultures of hippocampal neurons were prepared from the neonatal offspring of these dams, and NMDA receptor function was assessed by patch clamp electrophysiological techniques after 6-7 days in culture in ethanol-free media. Unexpectedly, we did not detect any changes in hippocampal NMDA receptor function at either the whole-cell or single-channel levels. However, we determined that fetal alcohol exposure alters the actions of the neurosteroids pregnenolone sulfate and pregnenolone hemisuccinate, which potentiate NMDA receptor function. Western immunoblot analyses demonstrated that this alteration is not due to a change in the expression levels of NMDA receptor subunits. Importantly, in utero ethanol exposure did not affect the actions of neurosteroids that inhibit NMDA receptor function. Moreover, the actions of pregnenolone sulfate on type A gamma-aminobutyric acid and non-NMDA receptor function were unaltered by ethanol exposure in utero, which suggests that the alteration is specific to NMDA receptors. These findings are significant because they provide, at least in part, a plausible mechanistic explanation for the alterations in the behavioral responses to neurosteroids found in neonatal rats prenatally exposed to ethanol and to other forms of maternal stress (Zimmerberg, B., and McDonald, B. C. (1996) Pharmacol. Biochem. Behav. 55, 541-547).  相似文献   

9.
Rabbit retinac preloaded with [3H]adenosine were superfused in vitro and the effect of neurotransmitter agonists and antagonists on the release of [3H]purines was studied. Glutamic acid, aspartic acid, kainic acid (KA), quisqualic acid (QUIS) and acid (NMDA) all stimulated the efflux of [3H] labelled and endogenous purines. Their effect was reduced in a Ca2+-free medium except when using a high concentration (100 μM) of KA, QUIS and NMDA. The effect of aspartic acid and of NMDA were blocked by 2-amino-7-phosphono-heptanoic acid (APH) and 2-amino-5-phosphono-valeric acid (APV). Carbachol also increased the release of adenosine-derived radioactivity and this effect was reduced by the removal of Ca2+ and by pretreatment with atropine. τ-Aminobutyric acid (GABA) and muscimol, induced a small increase in the release which was Ca2+-dependent and was blocked by bicuculline and picrotoxin. Dopamine elicited an increase in the release which was partially reduced in a Ca2+-free medium and was blocked by haloperidol. Glycine and 5-hydroxytryptamine (5-HT) also induced small but significant increases. The neurotransmitter antagonists had an effect of their own. Superfusion with APH and APV depressed the outflow of radioactivity whereas bicuculline, picrotoxin, strychnine and haloperidol enhanced it. The K+-evoked release of [3H]purines was reduced by haloperidol and by 5-HT. The observations indicate that stimulation of several important neurotransmitter receptors in the retina elicits the release of adenosine derivatives. The results with the antagonists also suggest that purines are continuously released as a result of a tonic activation of the respective membrane receptors.  相似文献   

10.
在建立稳定的红藻氨酸(KA)诱发小鼠惊厥模型的基础上,用放射配体受体结合分析法,研究孕烯醇酮(Pe)及其拮抗剂孕烯醇酮硫酸盐(Pes)对小鼠下丘脑、大脑皮层、海马和小脑四个脑区γ-氨基丁酸A(GABAA)受体的调制作用.结果显示,Pe能增加某些脑区3H-GABA与GABAA受体的结合量,下丘脑、海马和小脑差异显著(P<0.05或P<0.001),而大脑皮层差异不显著(P>0.05).Pe对GABAA受体的调制作用能被印防己毒素(Pic)阻断,对KA的致惊效应具有抑制作用.Pes 能显著降低各脑区GABAA受体的结合量(P<0.01或P<0.001),对惊厥有促进作用.实验结果提示:孕烯醇酮具有明显的镇静和抗惊厥效应,并且可能是通过GABAA受体介导的.  相似文献   

11.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N-methyl-D-aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non-NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non-NMDA glutamate receptors.  相似文献   

12.
Abstract: The NMDA receptor/channel has been shown to be inhibited by ethanol in the clinically relevant range 25–100 m M . We studied heteromeric assemblies (NR1b/NR2) of the NMDA receptor, expressed in oocytes, to address three questions regarding this inhibition, and discovered the following: (1) The inhibition was nearly equivalent when ethanol was coapplied with the agonist, and when ethanol was introduced after steady-state current was established, suggesting that ethanol does not act by interfering with the activation process of the NMDA receptor. (2) The degree of inhibition was controlled by the NR2 subunit, with both NR2A and NR2B significantly more sensitive to ethanol than NR2C and NR2D. (3) Manipulation of the NMDA receptor with a number of agents that normally modulate it did not alter the degree of inhibition produced by ethanol. The presence of Mg2+ (3 and 12.5 µ M ), Zn2+ (1 and 10 µ M ), or the glycine antagonist 7-chlorokynurenic acid (1.25 or 5 µ M ), did not alter the ethanol sensitivity of heteromeric (NR1b/NR2A, NR1b/NR2B, NR1b/NR2C) NMDA receptors. Redox modulation of the NMDA receptor by dithiothreitol (2 m M ) or 5,5'-dithiobis(2-nitrobenzoic acid) (1 m M ) also did not alter the degree to which ethanol inhibits NMDA receptors. Taken together, these results indicate that the ethanol sensitivity of native NMDA receptors, which likely exist in heteromeric form, results from actions at a site different from those of known modulators of the receptor.  相似文献   

13.
Abstract: To understand the mechanism of interaction of the dopamine D2L receptors with NMDA receptors, we have developed a model by transfecting human neuroblastoma SH-SY5Y cells with the human dopamine D2L receptor gene. In vitro blockade of NMDA receptors by the specific antagonists MK-801 and (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) on human neuroblastoma SH-SY5Y cells expressing human dopamine D2L receptors resulted in a significant increase in the density of D2L receptors without a significant change in receptor affinity. Moreover, the dopamine receptor mRNA level increased by ∼50% by the blockade of NMDA with MK-801. These results suggest a possible interaction of NMDA and dopamine D2L receptors in neuroblastoma SH-SY5Y cells. This system would serve as an excellent model to study the molecular mechanisms involved in the interaction of these two receptors.  相似文献   

14.
Abstract: Acute exposure to ethanol inhibits both the NMDA receptors and the Na/Ca-exchange carriers in neuronal membranes. This alters intraneuronal signaling pathways activated by Ca2+. Neurons exposed chronically to ethanol exhibit enhanced density and activity of NMDA receptors and increased maximal activity of the exchangers. In the present study, the expression of brain synaptic membrane proteins with ligand binding sites characteristic of NMDA receptors and of exchange carriers were determined after chronic ethanol administration (15 days) to rats. Such treatment caused an increase in the expression of the NMDAR1 receptor subunit, 15% above the levels in the pair-fed controls, as well as of three subunits of a complex that has properties characteristic of NMDA receptors, the glutamate, carboxypiperazinylphosphonate, and glycine binding proteins. Increases for the three binding proteins were 49, 50, and 62%, respectively. The expression of the 120-kDa exchanger proteins was increased by 14% and that of a 36-kDa exchanger-associated protein by 33%. Both the binding proteins and the exchangers returned to basal levels within 36–72 h after withdrawal from ethanol. No changes were detected in synaptic membrane Ca2+, Mg2+-ATPases. The enhanced expression of receptor and exchanger-associated proteins may explain the increases in the density and activity of NMDA receptors and exchange carriers after chronic ethanol treatment.  相似文献   

15.
Convulsants induce interleukin-1 beta messenger RNA in rat brain.   总被引:6,自引:0,他引:6  
The effects of systemic administration of kainic acid and pentylenetetrazol on interleukin-1 beta gene expression in the rat brain was studied. After the administration of kainic acid in a convulsive dose (10 mg/kg i.p.), Interleukin-1 beta mRNA was induced intensely in the cerebral cortex, thalamus and hypothalamus, moderately in the hippocampus and weakly in the striatum, but not in the midbrain, pons-medulla and cerebellum. Pentylenetetrazol induced Interleukin-1 beta mRNA in the cerebral cortex, hypothalamus, and hippocampus with a faster time-course than kainic acid. Diazepam suppressed both the convulsion and the induction of Interleukin-1 beta mRNA produced by kainic acid. Dexamethasone suppressed the induction of Interleukin-1 beta mRNA, but did neither the convulsion nor the induction of c-fos mRNA following the injection of kainic acid. These results provide the first evidence that intensive neuronal excitation induces Interleukin-1 beta mRNA in particular regions of the brain.  相似文献   

16.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

17.
The potency of ethanol to inhibit N-methyl-D-aspartate (NMDA) receptor functions may depend on the subunit composition of the NMDA receptors. We used a NR2A-B subunit-selective NMDA receptor agonist, homoquinolinic acid (HQ), and a subunit-unselective agonist, NMDA, to induce neurotoxicity in cerebellar granule cells and examined the neuroprotective actions of ethanol, as well as NR2A- and NR2B-subunit selective antagonists, respectively. HQ was a more potent neurotoxic agent than NMDA, as measured by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. NR2A- and NR2B-selective NMDA receptor antagonists displayed quite similar neuroprotective potencies against the NMDA- and HQ-produced cell death, indicating that the higher potency of HQ to induce neurotoxicity cannot be simply explained by NR2A- or NR2B-subunit selectivity. As expected, ethanol (25 and 50 mM) attenuated the NMDA-induced neurotoxicity in a non-competitive manner by significantly reducing the maximum neurotoxicity produced by NMDA. By contrast, ethanol inhibited the HQ-induced neurotoxicity in a manner resembling a competitive-like interaction significantly increasing the EC50 value for HQ, without reducing the maximum neurotoxicity produced by HQ. These results suggest that HQ reveals either a novel site or a not previously observed mechanism of interaction between ethanol and NMDA receptors in rat cerebellar granule cell cultures.  相似文献   

18.
The wide-ranging neuronal actions of excitatory amino acids, such as glutamate, are thought to be mediated mainly by postsynaptic N-methyl-D-aspartate (NMDA) and non-NMDA receptors. We now report the existence of presynaptic glutamate receptors in isolated nerve terminals (synaptosomes) prepared from hippocampus, olfactory bulb, and cerebral cortex. Activation of these receptors by NMDA or non-NMDA agonists, in a concentration-dependent manner, resulted in Ca(2+)-dependent release of noradrenaline from vesicular transmitter stores. The NMDA-stimulated release was potentiated by glycine and was blocked by Mg2+ and selective NMDA antagonists. In contrast, release stimulated by selective non-NMDA agonists was blocked by 6-cyano-7-nitroquinoxaline-2,3- dione, but not by Mg2+ or NMDA antagonists. Our data suggest that the presynaptic glutamate receptors can be classified pharmacologically as both the NMDA and non-NMDA types. These receptors, localized on nerve terminals of the locus ceruleus noradrenergic neurons, may play an important role in interactions between noradrenaline and glutamate.  相似文献   

19.
We investigated the effect of the excitatory amino acid (EAA) receptor agonists L-glutamate, N-methyl-D-aspartate (NMDA), (RS)-a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainic acid on KCl-induced contractions of rabbit tracheal smooth muscle, as well as the role of epithelium and endogenously produced nitric oxide and prostaglandins on these responses. L-Glutamate decreased KCI-induced contractions up to 30%. This effect was attenuated by epithelium removal, tetrodotoxin, methylene blue and indomethacin but not by NG-nitro-L-arginine methyl ester. While NMDA, AMPA and kainic acid had no effect, the combination of NMDA + kainic acid decreased KCI-induced contractions. These results suggest that, in rabbit trachea, L-glutamate has, at least in part, an epithelium-dependent effect mediated via prostaglandin formation and that the EAA receptors involved are non-classical.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号