首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both positive and negative biological effects of microwaves on drug actions in rats exposed to 1-mW/cm2, 2,450-MHz microwaves have been reported by several investigators. We conducted dosimetry studies for seven different exposure conditions to determine whether these different results could be due to the rats having been exposed differently. They included anterior and posterior exposures in a circular waveguide, near field, far field with E- or H-field parallel to the long axis of the body and dorsal exposure in a miniature anechoic chamber with E- or H-field parallel to the long axis of the body. The average specific absorption rates (SARs) in the head, tail, and body of the exposed rats were measured by means of a calorimetry system. The local SARs at eight locations in the brain were determined by temperature measurement with Vitek probes. Intensive coupling of energy to the tail when it was exposed parallel to the E-field was shown by thermography. For the same average incident power density, the average SARs in the heads of rats were about two times higher in the circular waveguide than for other exposures. The local SARs in the brain varied for different exposure conditions. Statistical comparisons of SARs under the different exposure conditions are presented.  相似文献   

2.
Full-size models of a man and a rhesus monkey were exposed to radiofrequency (RF) radiation at 225 MHz. The model of man was also exposed to 2,000 MHz. Specific absorption rates (SARs) were measured in partial-body sections, such as the arms, legs, etc., using gradient-layer calorimeters. Also, front-surface thermographic images were obtained to qualitatively show the heating patterns. For all of the configurations used, the SAR in the limbs was much higher than in the torso. Agreement (whole-body SARs) with spheroidal models was better for both models at 225 MHz than at 2,000 MHz. These results indicate that in the frequency range two orders of magnitude above whole-body resonance, SAR in the limbs significantly contributes to the whole-body average SAR.  相似文献   

3.
Electric fields (E-fields) induced within a phantom head from exposure to three different advanced mobile phone system (AMPS) hand-held telephones were measured using an implantable E-field probe. Measurements were taken in the eye nearest the phone and along a lateral scan through the brain from its centre to the side nearest the phone. During measurement, the phones were positioned alongside the phantom head as in typical use and were configured to transmit at maximum power (600 mW nominal). The specific absorption rate (SAR) was calculated from the in situ E-field measurements, which varied significantly between phone models and antenna configuration. The SARs induced in the eye ranged from 0.007 to 0.21 W/kg. Metal-framed spectacles enhanced SAR levels in the eye by 9–29%. In the brain, maximum levels were recorded at the measurement point closest to the phone and ranged from 0.12 to 0.83 W/kg. These SARs are below peak spatial limits recommended in the U.S. and Australian national standards [IEEE Standards Coordinating Committee 28 (1991): C95.1-1991 and Standards Australia (1990): AS2772.1-1990] and the IRPA guidelines for safe exposure to radio frequency (RF) electromagnetic fields [IRPA (1988): Health Phys 54:115–123]. Furthermore, a detailed thermal analysis of the eye indicated only a 0.022°C maximum steady-state temperature rise in the eye from a uniform SAR loading of 0.21 W/kg. A more approximate thermal analysis in the brain also indicated only a small maximum temperature rise of 0.034°C for a local SAR loading of 0.83 W/kg. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Species–area relationships are the product of many ecological processes and their interactions. Explanations for the species–area relationship (SAR) have focused on separating putative niche‐based mechanisms that correlate with area from sampling effects caused by patches with more individuals containing more species than patches with fewer individuals. We tested the hypothesis that SARs in breeding waterfowl communities are caused by sampling effects (i.e. random placement from the regional species pool). First, we described observed SARs and patterns of species associations for fourteen species of ducks on ponds in prairie Canada. Second, we used null models, which randomly allocated ducks to ponds, to test if observed SARs and patterns of species associations differed from those expected by chance. Consistent with the sampling effects hypothesis, observed SARs were accurately predicted by null models in three different years and for diving and dabbling duck guilds. This is the first demonstration that null models can predict SARs in waterbirds or any other aquatic organisms. Observed patterns of species association, however, were not well predicted by null models as in all years there was less observed segregation among species (i.e. more aggregation) than under the random expectation, suggesting that intraspecific competition could play a role in structuring duck communities. Taken together, our results indicate that when emergent properties of ecological communities such as the SAR appear to be caused by random processes, analyses of species associations can be critical in revealing the importance of niche‐based processes (e.g. competition) in structuring ecological communities.  相似文献   

5.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

6.
Specific absorption rates (SARs) were determined theoretically and experimentally for several spherical models of tissue exposed to electrical fields of TE101 mode in a rectangular cavity of 57.3 MHz resonant frequency. The approximate theoretical SAR can be calculated according to the Mie theory by superposition of four plane waves representing the fields excited in the cavity. The theoretical and thermographically determined SAR patterns in spheres with radii of 5, 7.5, and 10 cm and with conductivities of 0.1, 1, and 10 S/m were compared. For a sphere with radius less than 7.5 cm and conductivity less than 1 S/m, the SAR was quite uniform. When conductivity was increased to 10 S/m, the SAR patterns showed higher absorption in the periphery of the largest sphere (10-cm radius). These characteristics are important in evaluating the scaling technique of exposing a model of a human to very-high-frequency fields to obtain power absorption data in humans exposed to high-frequency or very-low-frequency fields.  相似文献   

7.
The effects of microwave irradiation at two different frequencies (1.28 and 5.62 GHz) on observing-behavior of rodents were investigated. During daily irradiation, eight male hooded rats performed on a two-lever task; depression of one lever produced one of two different tones and the other lever produced food when depressed in the presence of the appropriate tone. At 5.62 GHz, the observing-response rate was not consistently affected until the power density approximated 26 mW/cm2 at 1.28 GHz, the observing-response rate of all rats was consistently affected at a power density of 15 mW/cm2. The respective whole-body specific absorption rates (SARs) were 4.94 and 3.75 W/Kg. Measurements of localized SAR in a rat-shaped model of simulated muscle tissue revealed marked differences in the absorption pattern between the two frequencies. The localized SAR in the model's head at 1.28 GHz was higher on the side distal to the source of radiation. At 5.62 GHz the localized SAR in the head was higher on the proximal side. It is concluded that the rat's observing behavior is disrupted at a lower power density at 1.28 than at 5.62 GHz because of deeper penetration of energy at the lower frequency, and because of frequency-dependent differences in anatomic distribution of the absorbed microwave energy.  相似文献   

8.
9.
Aims We examine the role of species–area relationships (SARs), climatic parameters and phylogeny in shaping the altitudinal species richness patterns of moths. With respect to SARs, we investigate whether habitat heterogeneity is a probable mechanism for mediating area effects. We investigate the consistency of patterns by comparing several discrete regions. Location Nine mountainous regions in tropical Asia and the Malay Archipelago. Methods Presence‐only records for 292 species of the Lepidopteran family Sphingidae were used to measure interpolated species richness in 200‐m altitudinal bands. Species richness was correlated with area measures, which were calculated from both two‐dimensional map projections and three‐dimensional digital elevation models (DEMs). We used data simulations of homogeneous communities to test for effects of sample (i.e. habitat) heterogeneity as a mechanism causing SARs. Species richness patterns were compared among regions and between the two major sphingid clades, and were related to regional climatic characteristics. Results The area of altitudinal bands was a strong (statistical) explanation of species richness, particularly if area was calculated from three‐dimensional DEMs, but SARs often over‐predict species richness in lowland areas. There was no evidence for habitat heterogeneity as a mechanism of altitudinal SARs (tested for Borneo only). Species richness patterns varied considerably between the nine regions, which may, as an alternative to SARs, be explained by climatic differences such as (temperature) seasonality. Phylogenetic clades differed in species richness patterns exhibited. Main conclusion SARs provide strong empirical explanations for (regional) altitudinal patterns of species richness, but lack of evidence for the most likely mechanism cautions against a priori ‘corrections’ of species richness data for area. Furthermore, SARs are often not a sufficient explanation for the drop in species richness towards lowlands. Climate, or other collinear variables, may offer alternative explanations for altitudinal SARs. More research is needed to understand the mechanisms for SARs in an altitudinal context in order to evaluate their importance in the face of parameter collinearity.  相似文献   

10.
Possible effects of 1439 MHz electromagnetic near field (EMF) exposure on the blood-brain barrier (BBB) were investigated using immature (4 weeks old) and young (10 weeks old) rats, equivalent in age to the time when the BBB development is completed and the young adult, respectively. Alteration of BBB related genes, such as those encoding p-glycoprotein, aquaporin-4, and claudin-5, was assessed at the protein and mRNA levels in the brain after local exposure of the head to EMF at 0, 2, and 6 W/kg specific energy absorption rates (SARs) for 90 min/day for 1 or 2 weeks. Although expression of the 3 genes was clearly decreased after administration of 1,3-dinitrobenzene (DNB) as a positive control, when compared with the control values, there were no pathologically relevant differences with the EMF at any exposure levels at either age. Vascular permeability, monitored with reference to transfer of FITC-dextran, FD20, was not affected by EMF exposure. Thus, these findings suggest that local exposure of the head to 1439 MHz EMF exerts no adverse effects on the BBB in immature and young rats.  相似文献   

11.
A maximum of six live mice, mouse cadavers, prolate spheroids molded from muscle-equivalent tissue, or saline-filled culture flasks, were exposed to continuous wave radiation in a TEM cell at frequencies between 200 and 400 MHz. Whole-body average specific absorption rate (SAR) was determined from power meter measurements of incident, reflected, and transmitted powers. The SARs for both live mice and cadavers were approximately twice that for the prolate spheroid models, and when housed in Plexiglas restraining cages, about 2 1/2 times greater. An error multiplying factor is identified, that quantitatively expresses how SAR data obtained by the three-power-meter method becomes progressively more noisy as the irradiation frequency is lowered or as the TEM cell cross section is increased.  相似文献   

12.
吉林蛟河42 hm2针阔混交林样地植物种-面积关系   总被引:1,自引:0,他引:1       下载免费PDF全文
 种-面积关系是生态学中的基本问题, 其构建方式对种-面积关系的影响以及最优种-面积模型的选择仍然存在争议。该文利用吉林蛟河42 hm2针阔混交林样地数据, 分别采用巢式样方法和随机样方法建立对数模型、幂函数模型和逻辑斯蒂克模型, 并通过赤池信息量准则(AIC)检验种-面积模型优度。结果表明, 种-面积关系受到取样方法的影响, 随机样方法的拟合效果优于巢式样方法。采用随机样方法构建的幂指数模型(AIC = 89.11)和逻辑斯蒂克模型(AIC = 71.21)优于对数模型(AIC = 113.81)。根据AIC值可知, 随机样方法构建的逻辑斯蒂克模型是拟合42 hm2针阔混交林样地种-面积关系的最优模型。该研究表明: 在分析种-面积关系时不仅应考虑尺度效应, 还需注意生境变化及群落演替的影响。  相似文献   

13.
Aim The aims of this study are to resolve terminological confusion around different types of species–area relationships (SARs) and their delimitation from species sampling relationships (SSRs), to provide a comprehensive overview of models and analytical methods for SARs, to evaluate these theoretically and empirically, and to suggest a more consistent approach for the treatment of species–area data. Location Curonian Spit in north‐west Russia and archipelagos world‐wide. Methods First, I review various typologies for SARs and SSRs as well as mathematical models, fitting procedures and goodness‐of‐fit measures applied to SARs. This results in a list of 23 function types, which are applicable both for untransformed (S) and for log‐transformed (log S) species richness. Then, example data sets for nested plots in continuous vegetation (n = 14) and islands (n = 6) are fitted to a selection of 12 function types (linear, power, logarithmic, saturation, sigmoid) both for S and for log S. The suitability of these models is assessed with Akaike’s information criterion for S and log S, and with a newly proposed metric that addresses extrapolation capability. Results SARs, which provide species numbers for different areas and have no upper asymptote, must be distinguished from SSRs, which approach the species richness of one single area asymptotically. Among SARs, nested plots in continuous ecosystems, non‐nested plots in continuous ecosystems, and isolates can be distinguished. For the SARs of the empirical data sets, the normal and quadratic power functions as well as two of the sigmoid functions (Lomolino, cumulative beta‐P) generally performed well. The normal power function (fitted for S) was particularly suitable for predicting richness values over ten‐fold increases in area. Linear, logarithmic, convex saturation and logistic functions generally were inappropriate. However, the two sigmoid models produced unstable results with arbitrary parameter estimates, and the quadratic power function resulted in decreasing richness values for large areas. Main conclusions Based on theoretical considerations and empirical results, I suggest that the power law should be used to describe and compare any type of SAR while at the same time testing whether the exponent z changes with spatial scale. In addition, one should be aware that power‐law parameters are significantly influenced by methodology.  相似文献   

14.
Localized and averaged specific absorption rates (SARs) were obtained in a full-size muscle-equivalent human model exposed to near-field 29.9 MHz irradiation at an outdoor facility. The model was positioned erect on a metallic groundplane 1.22 m (4 ft) from the base of a 10.8-m (35 ft) whip antenna with an input power of 1.0 kW. For whole-body SAR, a mean value of 0.83 W/kg was determined using two gradient-layer calorimeters in a twin-well configuration. The localized SARs at 12 body locations were measured using nonperturbing temperature probes and were highest in the ankle region. We conclude that averaged SAR measurements in a full-size phantom are feasible using a twin-calorimeter approach; measurements in the field are practical when human-size (183 x 61 x 46 cm) calorimeters are used.  相似文献   

15.
Specific absorption rates (SAR) and specific utilization rates (SUR) of sodium, chloride, potassium, calcium, magnesium and phosphate ions were determined for Melilotus segetalis (Brot.) Ser. (annual sweetclover) grown under both control and salinized conditions (NaCl treatment of CE=15 dS m−1) for a complete life cycle with sequential harvests. The behaviour over time of the SARs and SURs of the mineral elements was in general correlated with relative growth rate (RGR) kinetics, with a parabolic trend during the vegetative phase and a progressive linear decrease during the reproductive stage. Salinity significantly reduced the SARs of K and Mg but did not affect the SARs of Ca and P during the vegetative phase. During the reproductive stage, however, the SARs of K, Ca and P of salt-stressed plants were higher than in control plants. The similar SARs of total cations (TC) found in control and salt-stressed plants may indicate compensatory mechanisms to maintain a constant total cation content. Salt-stressed plants showed lower SURs of K, Ca and P during the vegetative phase, and lower SURs of K and P but a higher SUR of Mg during the reproductive stage. A nutrient imbalance, caused by a lower root efficiency in absorbing K and Mg and a lower leaf efficiency in producing biomass per unit of K, Ca and P, apparently contributed to the salt-induced reduction in growth during the vegetative phase of M. segetalis. The switch to non-reduced, compensated growth during the reproductive phase may have been caused by a higher nutrient demand which increased the root efficiency in absorbing K, Ca and P and the leaf efficiency in utilizing Mg.  相似文献   

16.
Summary The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.  相似文献   

17.
Isothermal (37 +/- 0.2 degrees C) exposure of glioma cells (LN71) for 2 h to 27 or 2450 MHz continuous-wave radiofrequency (RF) radiation in vitro modulated the rates of DNA and RNA synthesis 1, 3, and 5 days after exposure. The alterations indicate effects on cell proliferation and were not caused by RF-induced cell heating. The dose response for either frequency of the radiation was biphasic. Exposure to specific absorption rates (SARs) of 50 W/kg or less stimulated incorporation rates of tritiated thymidine (3H-TdR) and tritiated uridine (3H-UdR), whereas higher SARs suppressed DNA and RNA synthesis. Statistically significant time-dependent alterations were detected for up to 5 days postexposure, suggesting a kinetic cellular response to RF radiation and the possibility of cumulative effects on cell proliferation. General mechanisms of effects are discussed.  相似文献   

18.
Despite widespread use of species-area relationships (SARs), dispute remains over the most representative SAR model. Using data of small-scale SARs of Estonian dry grassland communities, we address three questions: (1) Which model describes these SARs best when known artifacts are excluded? (2) How do deviating sampling procedures (marginal instead of central position of the smaller plots in relation to the largest plot; single values instead of average values; randomly located subplots instead of nested subplots) influence the properties of the SARs? (3) Are those effects likely to bias the selection of the best model? Our general dataset consisted of 16 series of nested-plots (1 cm2–100 m2, any-part system), each of which comprised five series of subplots located in the four corners and the centre of the 100-m2 plot. Data for the three pairs of compared sampling designs were generated from this dataset by subsampling. Five function types (power, quadratic power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear regression. In some of the communities, we found extremely high species densities (including bryophytes and lichens), namely up to eight species in 1 cm2 and up to 140 species in 100 m2, which appear to be the highest documented values on these scales. For SARs constructed from nested-plot average-value data, the regular power function generally was the best model, closely followed by the quadratic power function, while the logarithmic and Michaelis-Menten functions performed poorly throughout. However, the relative fit of the latter two models increased significantly relative to the respective best model when the single-value or random-sampling method was applied, however, the power function normally remained far superior. These results confirm the hypothesis that both single-value and random-sampling approaches cause artifacts by increasing stochasticity in the data, which can lead to the selection of inappropriate models.  相似文献   

19.
Specific absorption rate (SAR) value is dependent on permittivity value. However, variability in the published permittivity values for human and animal tissue and the development of sophisticated 3-dimensional digital anatomical models to predict SAR values has resulted in the need to understand how model parameters (permittivity value) affect the predicted whole body and localized SAR values. In this paper, we establish the partial derivative of whole body SARs and localized SAR values (defined as SAR for individual organs with respect to a change in the permittivity values of all tissue types, as well as for those tissues with the most variable permittivity values. Variations in the published permittivity values may substantially influence whole body and localized SAR values, but only under special conditions. Orientation of the exposed object to the incident electromagnetic wave is one of the most crucial factors. Published 2001 Wiley-Liss, Inc.  相似文献   

20.
Two systems for exposing mice to 2,450-MHz electromagnetic fields are described. In a waveguide system, four mice were placed in a Styrofoam cage and exposed dorsally to circularly polarized electromagnetic fields. The temperature and humidity in the mouse holder were kept constant by forced-air ventilation. For 1-W input power to the waveguide, the average specific absorption rate (SAR) was determined by twin-well calorimetry to be 3.60 ± 0.11 (SE) W/kg in 27-g mice. The maximum SAR at the skin surface determined thermographically was 8.36 W/kg in the head of the mouse. The second system was a miniature anechoic chamber. Six mice were irradiated dorsally to far field plane waves. Copper shielding and high-temperature absorbing material were lined inside the chamber to accommodate the high input power. The air ventilation at the location of the mice was separately controlled so that any heating in the absorber would not affect the animals. For 1-W input power, the average SAR was 0.17 ± 0.01 W/kg and the maximum SAR at the skin surface was 0.41 W/kg in the animal when irradiated with body axis parallel to the E field; the SARs were 0.11 ± 0.01 W/kg and 0.64 W/kg, respectively, when irradiated perpendicular to the E field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号