首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An esterase locus (Est-2), coding for carboxylesterase, and an acid phosphatase locus (Acph) were genetically studied by agar gel electrophoresis in the mosquito Aedes (Finlaya) togoi. The Est-2 and Acph variants occur as a monomer and a dimer, respectively. Both enzyme loci are linked to the sex locus (M) and s (straw-colored larva); the gene arrangement and recombination distances were Est-2—12.6%—s—31.7%—M—2.9%—Acph—3.2%—Est-3. The Est-3 locus was previously shown to code for carboxylesterase.This work was supported by Grant AI 16983-02 from the National Institutes of Health, Bethesda, Md.  相似文献   

2.
Electrophoretic variation ascribable to three protein-coding loci, coding for glutamine synthetase (GS), uridine monophosphate kinase (UMPK), and transferrin (Tf), was observed in three species of fish of the genus Xiphophorus. Electrophoretic patterns in interspecific F1 hybrid heterozygotes suggested monomeric subunit structures of UMPK and Tf and a multimeric structure of undetermined subunit number of GS. Linkage analyses in backcross hybrids indicated a recombination map of GS-0%-Tf-10.8%-UMPK. This group (designated Xiphophorus linkage group VI) was shown to assort independently from the 14 enzyme loci assigned to linkage groups I-V and from 19 other informative markers within the limits of the data.  相似文献   

3.
Electrophoretic variation ascribable to two enzyme loci, coding for a guanylate kinase (GUK2) and a glyceraldehyde-3-phosphate dehydrogenase (GAPD1), was observed in three species of fishes of the genus Xiphophorus. Electrophoretic patterns in F1 hybrid heterozygotes suggested a monomeric subunit structure for GUK2 and confirmed a tetrameric structure for GAPD1. Variant alleles at the two loci exhibited normal Mendelian segregation in backcross hybrids. Linkage analyses indicate estimated recombination of GUK2-7.6 percent-GAPD 1. This group (designated linkage group III) was shown to assort independently from the 7 loci comprising linkage groups I and II and from 26 other informative markers, within the limits of the data. Difficulties inherent in establishing homology with linkage groups in other species in cases involving presumed gene duplication are discussed.  相似文献   

4.
To establish the location of the semidwarf gene, sd-1, the anthocyanin activator (A), purple node (Pn), purple auricle (Pau), and the isozyme locus, EstI-2, in relation to DNA markers on the molecular linkage map of rice, 20 RFLP markers, previously mapped to the central region of chromosome 1 (McCouch et al. 1988), were mapped onto an F2 population derived from the cross Taichung 65 (A,Pn,Pau)/Taichung 65 (sd-1). sd-1 and EstI-2 were determined to be linked most tightly to RFLP markers RG 109 and RG 220, which cosegregated with each other. The distance between these RFLP markers and sd-1 was estimated to be 0.8 cM, based on an observed recombination value of 0.8%. The order of genes and markers in this region of chromosome 1 was determined to be sd-1 — (EstI-2 — RG220 — RG109) — RG381 — APnPau. To test the efficacy of selection for sd-1 based on these linked markers, 50-day-old F2 seedlings derived from another cross, Milyang 23/Gihobyeo, were analyzed for marker genotype. At this age, the semidwarf character could not be clearly detected based on phenotype. In addition, plant height was normally distributed in this population, making it difficult to unambiguously identify plants carrying sd-1. Thirteen seedlings homozygous for the sd-1-associated allele at EstI-2, RG220 and RG109, and 13 seedlings homozygous for the Sd-1-associated allele at all three marker loci were selected for further genetic analysis. At 20 days after heading, the culm lengths of these 26 plants were measured and the expected phenotype was confirmed in every case. These 26 plants were then selfed for four generations and F6 lines were again evaluated to determine whether any recombination among the three molecular markers, or between these markers and the sd-1 gene, could be detected. No recombinants were identified, confirming the tight linkage of these loci and the usefulness of genotypic selection for this recessive semidwarf character prior to the time when it can be evaluated based on phenotype.  相似文献   

5.
Tadano  Takeo 《Biochemical genetics》1984,22(7-8):587-595
Linkage studies were carried out on -glycerophosphate dehydrogenase (-GPDH) and isocitrate dehydrogenase (IDH) in the mosquito Aedes (Stegomyia) albopictus. Only one locus coding for -GPDH was revealed on agar gels by applying adult homogenates. Two loci for IDH were observed using either fourth-instar larvae, pupae, or adults. This study was restricted to the more anodal Idh-2 of the two loci, and -Gpdh. Both -Gpdh and Idh-2 encode dimeric enzymes. Thirteen backcrosses indicated that the -Gpdh and Idh-2 loci are arranged in linkage group 2 in the following order: p (pigmented pupa)—(ca. 2 map units)—Wb (white-body)—(7.5–17.8)—Idh-2—(13.1)—-Gpdh. Females exhibited more recombination than males.This work was supported by a Grant-in-Aid for Co-operative Research from the Ministry of Education, Japan.  相似文献   

6.
Summary Isozymes of peroxidase (PER) and superoxide dismutase (SOD) were analyzed in vegetative buds or very young leaves of seven species and two interspecific hybrids of Populus, in progenies of seven controlled crosses of three Populus species, and in needles of five Picea species and one putative hybrid. One to three PER, and one or two SOD zones of activity were observed. Electrophoretic mobility (EM) and banding phenotypes of isozymes of one PER locus were identical to those of one SOD locus in vegetative buds of five Populus species and hybrid. In leaves of the four Populus species and hybrid and progenies of controlled crosses, EM and phenotypes of isozymes of two PER loci were identical to those of two SOD loci. In Picea species, EM of isozymes of the only SOD locus was somewhat similar but not identical to that of one PER locus, and isozyme phenotypes of all individuals at the SOD locus were not identical to those at a PER locus. Chi-square tests verified the single-gene Mendelian control of the segregating allozyme variants at each of Per-L1 and Sod-1 in the three Populus species. The results of joint two-locus segregation tests indicated a very tight linkage and no recombination between Per-L1 and Sod-1 in three Populus species. Genes coding for isozymes of one or two PER loci are either presumably the same as, or very tightly linked to, the genes coding for isozymes of one or two SOD loci in the Populus species.  相似文献   

7.
The specific activity and the kinetic properties of partly purified pyruvate kinase (PK) (EC 2.7.1.40) from the Northern Krill, Meganyctiphanes norvegica, were investigated in relation to varying food resources. In order to evaluate the effect of starvation on the total energy metabolism, the respiration rates of fed and unfed krill were determined. The FPLC–elution profile of PK displayed two distinct peaks — PK I and II. The first isoform represented 80% of the total PK activity in the organism, and 20% was contributed by the second isoform. PK I was inhibited by ATP but was not influenced by fructose–1,6–bisphosphate (FBP). In contrast, PK II showed ATP inhibition and up to 2.5-fold increased activity by addition of 17 μmol·l−1 FBP. The Michaelis–Menten constants of both isoforms were 2–10-fold higher for ADP than for phosphoenolpyruvate (PEP). Alanine showed no regulatory effect on PK I and II. In specimens starved for 7 days oxygen consumption decreased by 20%. Neither the feeding experiments nor the animals captured in the field during low and high productive seasons indicate that PK properties of M. norvegica are modified in relation to food supply. Accordingly, alternative mechanisms are involved in the depression of the metabolic rate in terms of oxygen consumption.  相似文献   

8.
Summary Genetic analyses were conducted on alkaline phosphatases of the endosperm of dry kernels and leaf acid phosphatases in four open pollinated and one inbred line of cultivated rye (Secale cereale L.). A total of seven alkaline phosphatase isozymes were observed occurring at variable frequencies in the different cultivars analyzed. We propose that at least five loci control the alkaline phosphatases of rye endosperm — Alph-1, Alph-2, Alph-3, Alph-4 and Alph-5 — all of which have monomeric behaviour. The leaf acid phosphatases are controlled by one locus and have a dimeric quaternary structure. All loci coding for alkaline phosphatase isozymes showed one active, dominant allele and one null, recessive allele, except for the locus Alph-3 which showed two active, dominant alleles and one null, recessive one. The linkage analyses suggest the existence of two linkage groups for alkaline phosphatases: one of them would contain Alph-2, Alph-4, Alph-5 and the locus/loci coding isozymes 6 and 7. This linkage group is located in the 7RS chromosome arm. The other group would include Alph-1 and Alph-3 loci, being located in the 1RL chromosome arm. Leaf acid phosphatases have been previously located in the 7RL chromosome arm. Our data also support an independent relationship between loci controlling the endosperm alkaline phosphatases and leaf acid phosphatases.  相似文献   

9.
Summary Linkage relationships were established between the secalin loci, Sec 1 (40-K gamma and omega secalins, homologous to the wheat gliadins) and Sec 3 (HMW = high-molecular-weight secalins, homologous to the wheat HMW glutenin subunits), and five chromosomal rearrangements involving chromosome 1R of rye (Secale cereale L.). These were: interchanges T273W (1RL/5RS), T306W (1RS/5RL), and T850W (1RS/ 4RL), Robertsonian centromere split Rb1RW and the interchanged Robertsonian split Rb2R/248W. The analysis established the linkage relationships between the secalin loci and the breakpoints of the rearrangements, in addition to the quantitative effects of the rearrangements on the linkage. Sec-1 is located in the satellite at a position at least 2.5 cMorgan from the proximal border of the terminal C-band, and about 30 cMorgan from the nucleolar organizing region (NOR). The locus is also physically closer to the terminal C-band than to the NOR, but not as much as corresponds with the map distances. Similarly, the physical distance between Sec-3 and the centromere is greater than corresponds with the recombination frequency (0%–9%). Although overall recombination in 1RL remains the same, recombination between the centromere and Sec-3 is greatly reduced in the Robertsonian split combined with the interchange. This is not the case with the single Robertsonian split.  相似文献   

10.
Hexokinases (EC 2.7.1.1) were genetically analyzed in the mosquitoAedes togoi by agar gel electrophoresis. Enzyme activity was observed anodally in one major banding region (HK-1) on the gel and in another faintly stained region (HK-2). A total of six bands was detected in the HK-1 region. All six bands could be detected in three body parts, head, thorax, and abdomen, of adults with different banding intensities. The third and fourth bands, numbered from the more anodal side, showed the broadest substrate specificity and the greatest enzyme activity throughout development. Genetic analysis of the six HK-1 bands was undertaken on the hypothesis of a single gene locus (or three extremely tightly linked loci). The analysis gave the following gene order:HK-1—4.2±1.8 (recombination units±SE)—To-2Odh-2—29.5±2.5—sex (M/m)—s. A comparison is made of gene loci for hexokinases among the mosquito speciesCulex pipiens, Aedes aegypti, and this species, along with a comment on linkage relationships betweenHk andOdh (octanol dehydrogenase) loci in threeAedes species.This research was supported by National Institutes of Health Grant AI 16983 and a Grant-in-Aid for Co-operative Research (57340033) from the Ministry of Education, Science and Culture, Japan.  相似文献   

11.
In second-generation sparctics (Salvelinus fontinalis × Salvelinus alpinus) backcrossed toS. fontinalis, we have identified tight classical linkage of phenotypic sex withLdh-1, Aat-5, andGpi-3. We designate this locusSex-1 and suggest that it may be the primary sex-determining locus in salmonids. Cumulative salmonid gene-to-centromere map distances for the three biochemical loci put the order as centromere—Ldh-1—(Aat-5 andGpi-3), with the latter two loci being tightly linked. An absence of association of phenotypic sex (presumably Sex-1) with these same three loci and other loci known to be linked to these loci is shown in splakes (S. fontinalis × Salvelinus namaycush) and cutbows (Salmo gairdneri × Salmo clarki). These data imply that the linkage ofSex-1 with these loci is found only inS. alpinus and support the view thatSex-1 lies across the centromere from these three loci inS. alpinus, representing a Robertsonian fusion not found in any of the other four species. A similar specific Robertsonian fusion is argued forS. gairdneri, whereSex-1 may be linked across a centromere to another biochemical locus (Ha). These linkage results and chromosomal observations of other investigators suggest thatSex-1 lies on an information-depauperate arm.  相似文献   

12.
InNeurospora crassa, there is a single pyruvate kinase (PK) consisting of four identical subunits of 60k daltons. Northern and dot blot hybridization studies, using most of the yeast pyruvate kinase gene as a probe, suggest the presence of two distinct mRNA species for pyruvate kinase, separable on the basis of the length of their polyadenylated tails, by oligo(dT)cellulose chromatography. These messages are present in polysomes, immuno-precipitated by anti-PK antibodies, indicating probable translation in vivo. Fractions containing both messages were translatedin vitro in the heterologous systems as well as in a homologousN. crassa lysate, the newly-synthesized PK being detected by immunoadsorption. Protection studies using S1-nuclease suggest no major structural differences in the 5-untranslated and most of the coding regions of the two messages.  相似文献   

13.
Summary A cytogenetic map of the whole 1 R chromosome of rye has been made, with distances between adjacent markers shorter than 50% recombination. Included in the map are isozyme loci Gpi-R1, Mdh-R1 and Pgd2, the telomere C-bands of the short arm (ts1) and the long arm (tl1), two interstitial C-bands in the short arm proximal to the nuclear organizing region (NOR) (is1) and in the middle of the long arm (il1), respectively, and translocation T273W (Wageningen tester set). By means of electron microscope analysis of spread pachytene synaptonemal complexes, the breakpoint of this translocation was physically mapped in the short arm of 1R, proximal to NOR, and in the long arm of 5R (contrary to previous assumptions). The data indicated the marker order: ts1 — Gpi-R1 — is1 — T273W/Mdh-R1 — il1 — Pgd2 — tl1. A comparison between genetic and physical maps revealed that recombination is mainly restricted to the distal regions of both arms. For the translocation T273W, in heterozygotes no recombinants were observed between the translocation breakpoint and its two adjacently located markers (is1 and Mdh-R1), but recombination was not reduced in the distal regions of the chromosome. The segregations of several other isozyme and C-band markers also analyzed in the investigation presented here were consistent with observations of earlier authors concerning chromosome asignment and linkage relationships.  相似文献   

14.
 A candidate-gene approach to analyse the resistance of plants to phytopathogenic fungi is presented. The resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii) shows a gene-for-gene interaction (monogenic resistance), whereas resistance to white rot (Sclerotinia sclerotiorum) is quantitative, with different levels of resistance for different plant parts. By homology cloning, probes were obtained homologous to some plant resistance genes (nucleotide binding site-like, NBS, genes and serine-threonine protein kinase-like, PK, genes). These clones were used as probes for linkage mapping of the corresponding genes. It was demonstrated that at least three NBS-like loci are located on linkage-group 1, in the region where downy mildew resistance loci have been described. Quantitative trait loci for S. sclerotiorum resistance to penetration or extension of the mycelium in different tissues were studied in three crosses. Major QTLs for resistance were found on linkage group 1, with up to 50% of the phenotypic variability explained by peaks at the map position of the PK locus, 25 cM from the downy mildew loci. Received: 24 September 1997 / Accepted: 21 October 1997  相似文献   

15.
Heat-shocked Xenopus embryos have an unusually complex heat shock response. The dominant heat shock protein (Hsp) has a relative molecular mass (Mr) of 62,000 D (Hsp62). Affinity-purified IgGs against the glycolytic enzyme pyruvate kinase (PK; EC 2.7.1.40) specifically immunoprecipitated Hsp62 from extracts of embryos that had been heat-shocked at 37°C for 30 min. Thus, Hsp62 and pyruvate kinase are immunologically cross-reacting. Electrophoretic separation of PK isoforms suggests that heat-shocked Xenopus embryos increase synthesis of an isoform of PK. Thermal denaturation studies suggest that this isoform has enhanced thermal stability. The identification of PK as an Hsp is discussed within the context of a physiological requirement for elevated levels of anaerobic glycolysis in heatstressed cells as a vital component of the acquisition of thermotolerance. © 1993Wiley-Liss, Inc.  相似文献   

16.
Summary Thirteen enzymes (MDH, SDH, LAP, PGM, PX, IDH, GPI, 6PGD, APH, GOT, GDH, ME and SOD) of 3 cultivated beet (B. vulgaris L.) gene pools, comprising 12 accessions of fodder beet, 11 of old multigerm sugar beet and 10 of modern monogerm sugar beet, were investigated using horizontal starch gel electrophoresis. Eleven accessions of primitive or wild B. vulgaris were also included for the comparison of isozymes. Variation in isozyme phenotypes was investigated to detect diversity in the three cultivated forms of beet. Phenotypic variation was observed in all except ME and SOD, which were monomorphic. A high degree of phenotypic polymorphism (Pj) was found in GDH, PGM, IDH, APH and MDH. Differences in phenotypic polymorphism in MDH, GPI and PX were recognized between fodder beet and both sugar beet groups. Average polymorphism for 13 enzymes in both sugar beets was significantly higher than that in fodder beet. For 13 enzymes, the existence of high isozyme diversity in both sugar beet gene pools was revealed. Allele frequencies in 13 alleles of five enzyme-coding loci, Lap, Px-1, Aph-1, Got-2 and Gdh-2, were investigated. New alleles, Px-1 1 and Got-2 1, were found in fodder beet accessions. No significant differences of average allele frequencies of five loci between fodder beet and both sugar beets were recognized. Several unique alleles and different isozyme phenotypes were observed in the accessions of B. vulgaris ssp. macrocarpa and ssp. adanensis. Future utilization of cultivated beet gene pools for sugar beet breeding is discussed from the viewpoint of genetic resources.  相似文献   

17.
Electrophoretic variation and inheritance of four novel enzyme systems were studied in maize (Zea mays L.). A minimum of 10 genetic loci collectively encodes isozymes of aconitate hydratase (ACO; EC 4.2.1.3.), adenylate kinase (ADK; EC 2.7.4.3), NADH dehydrogenase (DIA; EC 1.6.99.—), and shikimate dehydrogenase (SAD; EC 1.1.1.25). At least four loci are responsible for the genetic control of ACO. Genetic data for two of the encoding loci,Aco1 andAco4, demonstrated that at least two maize ACOs are active as monomers. Analysis of organellar preparations suggests that ACO1 and ACO4 are localized in the cytosolic and mitochondrial subcellular fractions, respectively. Maize ADK is encoded by a single nuclear locus,Adk1, governing monomeric enzymes that are located in the chloroplasts. Two cytosolic and two mitochondrial forms of DIA were electrophoretically resolved. Segregation analyses demonstrated that the two cytosolic isozymes are controlled by separate loci,Dia1 andDia2, coding for products that are functional as monomers (DIA1) and dimers (DIA2). The major isozyme of SAD is apparently cytosolic, although an additional faintly staining plastid form may be present. Alleles atSad1 are each associated with two bands that cosegregate in controlled crosses. Linkage analyses and crosses with B-A translocation stocks were effective in determining the map locations of six loci, including the previously described but unmapped locusAcp4. Several of these loci were localized to sparsely mapped regions of the genome.Dia2 andAcp4 were placed on the distal portion of the long arm of chromosome 1, 12.6 map units apart.Dia1 was localized to chromosome 2, 22.2 centimorgans (cM) fromB1. Aco1 was mapped to chromosome 4, 6.2 cM fromsu1. Adk1 was placed on the poorly marked short arm of chromosome 6, 8.1 map units fromrgd1. Less than 1% recombination was observed betweenGlu1 (on chromosome 10) andSad1. In contrast to many other maize isozyme systems, there was little evidence of gene duplication or of parallel linkage relationships for these allozyme loci. This work was supported by grants from Pioneer Hi-Bred International, Inc., of Johnston, Iowa, the National Institute of Health (Research Grant GM11546), and the United States Department of Agriculture (Competitive Research Grant 83-CRCR-1-1273). This is Paper No. 11372 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh.  相似文献   

18.
Fish gene mapping studies have identified several syntenic groups showing conservation over more than 400 million years of vertebrate evolution. In particular, Xiphophorus linkage group IV has been identified as a homolog of human chromosomes 15 and 19. During mammalian evolution, loci coding for glucosephosphate isomerase, peptidase D, muscle creatine kinase, and several DNA repair genes (ERCC1, ERCC2, and XRCC1) appear as a conserved syntenic group on human chromosome 19. When X. clemenciae and X. milleri PstI endonuclease-digested genomic DNA was used in Southern analysis with a human ERCC2 DNA repair gene probe, a strongly cross-hybridizing restriction fragment length polymorphism was observed. Backcrosses to X. clemenciae from X. milleri × X. clemenciae F1 hybrids allowed tests for linkage of the ERCC2-like polymorphism to markers covering a large proportion of the genome. Statistically significant evidence for linkage was found only for ERCC2L1 and CKM (muscle creatine kinase), with a total of 41 parents and 2 recombinants (4.7% recombination, χ2 = 35.37, P < 0.001); no evidence for linkage to GPI and PEPD in linkage group IV was detected. The human chromosome 19 synteny of ERCC2 and CKM thus appears to be conserved in Xiphophorus, while other genes located nearby on human chromosome 19 are in a separate linkage group in this fish. If Xiphophorus gene arrangements prove to be primitive, human chromosome 19 may have arisen from chromosome fusion or translocation events at some point since divergence of mammals and fishes from a common ancestor.  相似文献   

19.
The segregation of rat esterases controlled by loci residing in linkage group V (LGV) has been studied in two backcross series, (LEW/Han × BN/Han)F1 × LEW/Han and (LEW/Han × LE/Han)F1 × LEW/Han. Es-14 (formerly Es-Si) was shown to be closely linked to Es-1. A new esterase locus, Es-15, was described which codes for a liver isozyme. The distribution pattern of three alleles at the Es-15 locus is presented for 52 independent inbred strains. Close linkage of Es-15 to Es-14 and to Es-1 was established, proposing the following gene order: [Es-2, Es-10]—[ES-1, ES-14, ES-15]. The esterase loci on LGV are thus separated into two gene clusters, cluster 1 and cluster 2. These conclusions are supported by the strain distribution patterns of the two RI strain series, LXB and DXE.Otto von Deimling was supported by the Deutsche Forschungsgemeinschaft (De 315/2-1, communication No. 56).  相似文献   

20.
Electrophoretic variation is described for malic enzyme (ME) for the first time in brook trout (Salvelinus fontinalis). Since the quaternary structure of ME was not clear from examination of banding patterns in brook trout alone, ME phenotypes in rainbow trout (Salmo gairdneri) × brook trout hybrids as well as in esocid species demonstrated that ME is tetrameric. A model of two duplicated loci is proposed to account for the observed variation. One locus (ME-2) is fixed and one locus (ME-1) is variable with three electrophoretically distinct alleles; the protein products of ME-1 are reduced in activity relative to the protein products of ME-2. Joint segregation was examined between ME-1 and ten other biochemical loci in brook trout, and between ME-1, ME-2, and nine other biochemical loci in a splake—lake trout (Salvelinus namaycush) × brook trout hybrid—backcross. All pairwise examinations showed random assortment except ME-2 with an isocitrate dehydrogenase locus (IDH-3), which showed complete linkage in the splake backcross. This may be due to a chromosomal aberration.Authorized for publication as Paper No. 5599 in the Journal Series of The Pennsylvania Agricultural Experiment Station, University Park, Pennsylvania, in cooperation with the Benner Spring Fish Research Station, The Pennsylvania Fish Commission, Bellefonte, Pennsylvania. M.S. was supported by an NSF Graduate Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号