首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2022,24(4):385-392
Allogeneic stem cell transplantation is a potentially curative therapy for some malignant and non-malignant disease. There have been substantial advances since the approaches first introduced in the 1970s, and the development of approaches to transplant with HLA incompatible or alternative donors has improved access to transplant for those without a fully matched donor. However, success is still limited by morbidity and mortality from toxicity and imperfect disease control. Here we review our emerging understanding of how reconstitution of effective immunity after allogeneic transplant can protect from these events and improve outcomes. We provide perspective on milestones of immune reconstitution that are easily measured and modifiable.  相似文献   

2.
Allogeneic hematopoietic cell transplantation has broad clinical applications extending from the treatment of malignancies to induction of immunologic tolerance. However, adaptive cellular and humoral immunity frequently remain impaired posttransplantation. Here, recovery of T-dependent and T-independent Ab responses was evaluated in mice transplanted with purified hematopoietic stem cells (HSCs) devoid of the mature immune cells believed to hasten immune recovery. Mixed and full donor chimeras were created by conditioning recipients with sublethal or lethal irradiation, respectively, across different donor/host genetic disparities. By 6 wk posttransplantation, all animals demonstrated robust T-independent Ab responses, and all mixed chimeras and recipients of MHC-matched or haploidentical HSCs with a shared MHC haplotype had T-dependent Ab responses equivalent to those of untransplanted controls. Full chimeras that received fully MHC-disparate HSCs showed delayed T-dependent Ab responses that recovered by 12 wk. This delay occurred despite early reconstitution and proper migration to germinal centers of donor-derived T(follicular helper) (T(FH)) cells. Congenic transplants into T(FH)-deficient CD4(-/-) mice revealed restoration of T-dependent Ab responses by 6 wk, leading us to conclude that MHC disparity caused delay in humoral recovery. These findings, together with our previous studies, show that, contrary to the view that depletion of graft lymphocytes results in poor posttransplant immunity, elimination of immune-suppressing graft-versus-host reactions permits superior immune reconstitution. This study also provides insight into the regeneration of T(FH) cells and humoral immunity after allogeneic HSC transplantation.  相似文献   

3.
《Cytotherapy》2014,16(10):1325-1335
Immunosuppression of patients after hematopoietic stem cell or kidney transplantation potentially leads to reactivation of JC and BK polyomaviruses. In hematopoietic stem cell transplantation, the reactivation rate of BKV can be up to 60%, resulting in severe complications of the urogenital tract, particularly hemorrhagic cystitis and renal dysfunction. After kidney transplantation, BKV reactivation can cause a loss of the graft. JCV can cause progressive multifocal leukoencephalopathy, a lethal disease. Adoptive transfer of donor-derived polyomavirus-specific T cells is an attractive and promising treatment that restores virus-specific cellular immunity. Pioneering work in the early 1990s on the reconstitution of cellular immunity against cytomegalovirus and recent development in the field of monitoring and isolation of antigen-specific T cells paved the way toward a personalized T-cell therapy. Multimer technology and magnetic beads are available to produce untouched T cells in a single-step, good manufacturing practice–compliant procedure. Another exciting aspect of T-cell therapy against polyomaviruses is the fact that both JCV and BKV can be targeted simultaneously because of their high sequence homology. Finally, “designer T cells” can be redirected to recognize polyomavirus antigens with high-affinity T-cell receptors. This review summarizes the state-of-the art technologies and gives an outlook of future developments in the field.  相似文献   

4.
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.    相似文献   

5.
Transplantation of spermatogonial stem cells into syngeneic or immunosuppressed recipient mice or rats can result in donor-derived spermatogenesis and fertility. Recently, this approach has been employed to introduce a transgene into the male germline. Germ-cell transplantation in species other than laboratory rodents, if successful, holds great promise as an alternative to the inefficient methods currently available to generate transgenic farm animals that can produce therapeutic proteins in their milk or provide organs for transplantation to humans. To explore whether germ-cell transplantation could result in donor-derived spermatogenesis and fertility in immunocompetent recipient goats, testis cells were transplanted from transgenic donor goats carrying a human alpha-1 antitrypsin expression construct to the testes of sexually immature wild-type recipient goats. After puberty, sperm carrying the donor-derived transgene were detected in the ejaculates of two out of five recipients. Mating of one recipient resulted in 15 offspring, one of which was transgenic for the donor-derived transgene. This is the first report of donor cell-derived sperm production and transmission of the donor haplotype to the next generation after germ-cell transplantation in a nonrodent species. Furthermore, these results indicate that successful germ-cell transplantation is feasible between immunocompetent, unrelated animals. In the future, transplantation of genetically modified germ cells may provide a more efficient alternative for production of transgenic domestic animals.  相似文献   

6.
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.  相似文献   

7.
It is well known that adoptive transfer of donor-derived tolerogenic dendritic cells (DCs) helps to induce immune tolerance. RelB, one of NF-κB subunits, is a critical element involved in DC maturation. In the present study, our results showed tolerogenic DCs could be acquired via silencing RelB using small interfering RNA. Compared with imDCs, the tolerogenic DCs had more potent ability to inhibit mixed lymphocyte reaction (MLR) and down-regulate Th1 cytokines and prompt the production of Th2 cytokines. They both mediated immune tolerance via the increased of T cell apoptosis and generation of regulatory T cells. Administration of donor-derived tolerogenic DCs significantly prevented the allograft rejection and prolonged the survival time in a murine heart transplantation model. Our results demonstrate donor-derived, RelB-shRNA induced tolerogenic DCs can significantly induce immune tolerance in vitro and in vivo.  相似文献   

8.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

9.
The replacement of abnormal hematopoietic stem cells (HSCs) with normal transplanted HSCs can correct a wide range of hematologic disorders. Here, we provide evidence that transplantation of more differentiated progenitor cells can be used to more rapidly correct lymphoid deficiencies in unconditioned immunocompromised mice. Transplantation of flk2+ multipotent progenitors led to robust B and T cell reconstitution that was maintained for at least 16 weeks. Antigenic challenge at 16 weeks post-transplantation revealed that reconstituted lymphocytes maintained a functional repertoire. In contrast to the persistent lymphocytic engraftment, myeloid chimerism was lost by 12 weeks post-transplantation consistent with the fact that flk2+ progenitors are non-self-renewing. Thus, while more differentiated progenitors are capable of rescuing lymphoid deficiencies, transplantation of HSCs must be used for the correction of non-lymphoid disorders, and, we propose, very long-term immune reconstitution. Based on recent evidence, we discuss novel strategies to achieve the replacement of abnormal HSCs without the use of cytotoxic conditioning regimens.  相似文献   

10.
Continuous efforts are dedicated to develop immunotherapeutic approaches to neuroblastoma (NB), a tumor that relapses at high rates following high-dose conventional cytotoxic therapy and autologous bone marrow cell (BMC) reconstitution. This study presents a series of transplant experiments aiming to evaluate the efficacy of allogeneic BMC transplantation. Neuro-2a cells were found to express low levels of class I major histocompatibility complex (MHC) antigens. While radiation and syngeneic bone marrow transplantation (BMT) reduced tumor growth (P < 0.001), allogeneic BMT further impaired subcutaneous development of Neuro-2a cells (P < 0.001). Allogeneic donor-derived T cells displayed direct cytotoxic activity against Neuro-2a in vitro, a mechanism of immune-mediated suppression of tumor growth. The proliferation of lymphocytes from congenic mice bearing subcutaneous tumors was inhibited by tumor lysate, suggesting that a soluble factor suppresses cytotoxic activity of syngeneic lymphocytes. However, the growth of Neuro-2a cells was impaired when implanted into chimeric mice at various times after syngeneic and allogeneic BMT. F1 (donor-host) splenocytes were infused attempting to foster immune reconstitution, however they engrafted transiently and had no effect on tumor growth. Taken together, these data indicate: (1) Neuro-2a cells express MHC antigens and immunogenic tumor associated antigens. (2) Allogeneic BMT is a significantly better platform to develop graft versus tumor (GVT) immunotherapy to NB as compared to syngeneic (autologous) immuno-hematopoietic reconstitution. (3) An effective GVT reaction in tumor bearing mice is primed by MHC disparity and targets tumor associated antigens.  相似文献   

11.
Haploidentical hematopoietic stem cell transplantation from a mismatched family member is an alternative treatment for transplant candidates who lack a HLA-matched related or an appropriate unrelated donor. One of main obstacles to successful haploidentical transplantation is slow immune reconstitution which significantly increases the risk of opportunistic infections, graft-vs-host-disease and disease relapse. Immune reconstitution is conventionally estimated by phenotypic recovery of immune cells according to lineage and/or by in vitro evidence of cell function. The limitations of these approaches include the sensitivity and specificity of phenotype markers, the availability of antibodies, the instability of long-term cell culture and the laborious nature of cell-function assays. Investigators have sought alternative approaches that are more sensitive, specific and simple, and that allow high-throughput testing for use in clinical transplantation. In this mini-review, we briefly introduce the concept of "molecular monitoring of immune-reconstitution" and discuss recent progress in this field achieved by our laboratory and other groups. We also propose future directions for clinical research incorporating these novel concepts.  相似文献   

12.
Umbilical cord blood(UCB) is a valuable source of hematopoietic stem cells(HSCs) and potential alternative for bone marrow transplantation for patients who lack human leukocyte antigen(HLA)-matched donors. The main practical advantages of UCB over other HSC sources are the immediate availability, lower incidence of graft-versus-host disease, minimal risk to the donor, and lower requirement for HLA compatibility. However, the use of UCB is limited by delayed engraftment and poor immune reconstitution, leading to a high rate of infection-related mortality. Therefore, severe infectious complications, especially due to viral pathogens remain the leading cause of morbidity and mortality during the post-UCB transplantation(UCBT) period. In this context, careful screening and excluding the viral-contaminated UCB units might be an effective policy to reduce the rate of UCBT-related infection and mortality. Taken together,complete prevention of the transmission of donor-derived viral pathogens in stem cell transplantation is not possible. However, having the knowledge of the transmission route and prevalence of viruses will improve the safety of transplantation. To the best of our knowledge, there are few studies that focused on the risk of virus transmission through the UCB transplant compared to other HSC sources. This review summarizes the general aspects concerning the prevalence, characteristics, and risk factors of viral infections with a focus on the impact of viral pathogens on cord blood transplantation safety.  相似文献   

13.
Accumulating evidence suggests that innate immunity interacts with the adaptive immune system to identify potentially harmful antigens and eliminate them from the host. A central facet of innate immunity is complement, which for some time has been recognized as a contributor to inflammation in transplant rejection but without detailed analysis of its role in what is principally a T cell mediated process. Moreover, epithelial and vascular tissues at local sites of inflammation secrete complement components; however, the role of such local synthesis remains unclear. Here we show that the absence of locally synthesized complement component C3 is capable of modulating the rejection of renal allografts in vivo and regulating T-cell responses in vivo and in vitro. The results indicate that improved success in kidney transplantation could come from therapeutic manipulation of innate immunity in concert with T cell directed immunosuppression.  相似文献   

14.
We studied immunity to the blood stage of the rodent malaria, Plasmodium vinckei vinckei, which is uniformly lethal to mice. BALB/c mice develop solid immunity after two infections and drug cure. The following experiments define the basis of this immunity. Transfer of pooled serum from such immune mice renders very limited protection to BALB/c mice and no protection to athymic nu/nu mice. Moreover, B cell-deficient C3H/HeN mice develop immunity to P. vinckei reinfection in the same manner as immunologically intact mice, an observation made earlier. In vivo depletion of CD4+ T cells in immune mice abrogates their immunity. This loss of immunity could be reversed through reconstitution of in vivo CD4-depleted mice with fractionated B-, CD8-, CD4+ immune spleen cells; however, adoptive transfer of fractionated CD4+ T cells from immune spleen into naive BALB/c or histocompatible BALB/c nude mice does not render recipients immune. In vivo depletion of CD8+ T cells did not influence the parasitemia in nonimmune or immune mice. Splenectomy of immune mice completely reverses their immunity. Repletion of splenectomized mice with their own spleen cells does not reconstitute their immunity. We conclude that some feature of the malaria-modified spleen acts in concert with the effector/inducer function of CD4+ T cells to provide protection from P. vinckei. To be consistent with this finding, a malaria vaccine may require a combination of malaria Ag to induce immune CD4+ T cells and an adjuvant or other vaccine vehicle to alter the spleen.  相似文献   

15.
CD8 T cell cross-priming, an established mechanism of protective antiviral immunity, was originally discovered during studies involving minor transplantation Ags. It is unclear whether or how cross-primed CD8 T cells, reactive to donor-derived, but recipient class I MHC-restricted epitopes, could injure a fully MHC-disparate, vascularized transplant. To address this question we studied host class I MHC-restricted, male transplantation Ag-reactive T cell responses in female recipients of fully MHC-disparate, male heart transplants. Cross-priming to the immune-dominant determinant HYUtyp occurred at low frequency after heart transplantation. CD8 T cell preactivation through immunization with HYUtyp mixed in CFA did not alter the kinetics of acute rejection. Furthermore, neither HYUtyp immunization nor adoptive transfer of HYUtyp-specific TCR-transgenic T cells affected outcome in 1) a model of chronic rejection in the absence of immunosuppression or 2) a model of allograft acceptance induced by costimulatory blockade. The results support the contention that CD8 T cells reactive to host-restricted, but donor-derived, Ags are highly specific and are nonpathogenic bystanders during rejection of MHC-disparate cardiac allografts.  相似文献   

16.
Immune reconstitution during antiretroviral therapy has recently been shown to depend upon multiple factors at work in T-cell homeostasis, amongst which the reduction of thymus dysfunction and of immune hyperactivation is instrumental. The restoration of host defenses against opportunistic pathogens is, however, balanced by the poor immunity restored against HIV thus giving a satisfying link between antigen stimulation and the reconstitution of immune responses to pathogens.  相似文献   

17.
Purified NK cells were obtained from mice with severe combined immune deficiency and were activated with human IL-2 (hrIL-2) in vitro to determine if, once activated, these cells could be transferred with compatible bone marrow cells (BMC) and promote marrow engraftment in irradiated allogeneic recipients. After culture with hrIL-2, these cells maintained a phenotypic and lytic spectrum consistent with a pure population of activated NK cells. These activated NK cells were then adoptively transferred with the donor BMC and rhIL-2 into lethally irradiated allogeneic hosts. The addition of NK cells with the BMC allowed for more rapid hematopoietic engraftment as determined through short term studies, and greater donor-derived chimerism with accelerated reconstitution of the B cell population as determined with long term analysis. No evidence of graft-vs-host disease was detected in the recipients receiving the activated NK cells with allogeneic T cell replete BMC and hrIL-2. The mechanism by which the transferred NK cells improved BMC engraftment was at least partly through the abrogation of the host effector cell's ability to mediate resistance to the marrow graft. Thus, the administration of donor-type activated NK cells with BMC and hrIL-2 may significantly augment hematopoietic engraftment and immune reconstitution in the clinical setting of allogeneic BMT without giving rise to graft-vs-host disease.  相似文献   

18.
Donor NK cells could promote engraftment by suppressing host alloreactive responses during allogeneic bone marrow transplantation (allo-BMT). The biological activity of NK cells could be significantly enhanced by IL-15. The current study attempted to evaluate the effect of donor NK cells and IL-15 administration on engraftment and immune reconstitution in a murine nonmyeloablative allo-BMT model. Mice infused with donor NK cells and treated with IL-15 during nonmyeloablative allo-BMT resulted in increased donor engraftment compared with either treatment alone. The number of donor-derived cell subsets also increased in the spleen of the recipient mice with combination treatment. The alloreactivity to donor type Ags was significantly reduced in the recipient mice with donor NK cell infusion and IL-15 treatment, which was manifested by decreased proliferation and IL-2 secretion of splenocytes from recipient mice in response to donor type Ags in MLR and decreased capacity of the splenocytes killing donor type tumor targets. We subsequently exposed recipient mice to reduced irradiation conditioning and showed that donor NK cell infusion and hydrodynamic injection-mediated IL-15 expression could synergistically promote donor engraftment and suppress alloreactivity during nonmyeloablative allo-BMT. Infusion of CFSE-labeled donor CD45.1(+) NK cells demonstrated that IL-15 could enhance the infused donor NK cell proliferation and function in vivo. IL-15 treatment also promoted donor bone marrow-derived NK cell development and function. Thus, donor NK cell infusion and IL-15 treatment could synergistically promote the engraftment and the development of donor-derived cell subsets and suppress the host alloresponse in a murine nonmyeloablative allo-BMT model.  相似文献   

19.
Infection remains the major complication of immunosuppressive therapy in organ transplantation. Therefore, reconstitution of the innate immunity against infections, without activation of the adaptive immune responses, to prevent graft rejection is a clinically desirable status in transplant recipients. We found that GM-CSF restored TNF mRNA and protein expression without inducing IL-2 production and T cell proliferation in glucocorticoid-immunosuppressed blood from either healthy donors or liver transplant patients. Gene array experiments indicated that GM-CSF selectively restored a variety of dexamethasone-suppressed, LPS-inducible genes relevant for innate immunity. A possible explanation for the lack of GM-CSF to restore T cell proliferation is its enhancement of the release of IL-1betaR antagonist, rather than of IL-1beta itself, since exogenously added IL-1beta induced an IL-2-independent Con A-stimulated proliferation of glucocorticoid-immunosuppressed lymphocytes. Finally, to test the in vivo relevance of our findings, we showed that GM-CSF restored the survival of dexamethasone- or cyclosporine A-immunosuppressed mice from an otherwise lethal infection with Salmonella typhimurium. In addition to this increased resistance to infection, GM-CSF did not induce graft rejection of a skin allotransplant in cyclosporine A-immunosuppressed mice. The selective restoration potential of GM-CSF suggests its therapeutic use in improving the resistance against infections upon organ transplantation.  相似文献   

20.
Poor immune reconstitution after haplo-identical stem cell transplantation results in high mortality from viral infections and relapse. One approach to overcome this problem is to deplete alloreactive cells selectively by deleting T cells activated by recipient stimulators, using an immunotoxin directed against the activation marker CD25. However, the degree of depletion of alloreactive cells is variable following stimulation with recipient PBMC, and this can result in GvHD. We have shown that using recipient EBV-transformed LCL as stimulators to activate donor alloreactive T cells results in more consistent depletion of in vitro alloreactivity while preserving T-cell responses to viral and potential myeloid tumor Ag. Based on these data, we have embarked on a phase I clinical dose escalation study of add-back of allo-LCL-depleted donor T cells in the haplo-identical setting, to determine if the allodepletion we achieve to allow infusion of sufficient T cells to restore useful antiviral/anti-leukemic responses without causing GvHD. Fifteen patients have so far been treated. The incidence of significant acute or chronic GvHD has been low (2/15), as has mortality from infection (1/15). Preliminary data show accelerated immune reconstitution in dose level 2 patients. Infused allodepleted donor T cells appear able to expand significantly in the face of viral reactivations, and doses as low as 3 x 10(5)/kg may be sufficient to confer useful antiviral immunity in this setting. At a median follow-up of 19.5 months, nine of 15 patients are alive and disease-free. Five patients have relapsed, all of whom have died.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号