首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
徐嘉晖  高雷  崔晓阳 《生态学杂志》2017,28(10):3111-3118
土壤黑碳由于具有生物化学惰性被视为土壤稳定碳库的主要成分.本文量化了大兴安岭中段森林土壤黑碳,分析了黑碳在各粒级内的分布,并探讨了黑碳的稳定机制及其在土壤碳库中的重要性.结果表明: 土壤黑碳表聚现象明显,表层黑碳占总剖面(64 cm)的68.7%,随着土层加深黑碳含量显著降低,但黑碳占有机碳的比例却呈现上升趋势.气候条件影响大兴安岭地区土壤黑碳的分布,相对寒冷和湿润的气候条件提高了土壤固持黑碳的潜力;土壤黑碳在各粒级内所占比例表现为黏粒>粉粒>细砂>粗砂,尽管黏粒中黑碳含量最高,并随土层深度增加而升高,但黏粒中黑碳占有机碳的比例却无明显变化,黑碳/有机碳的升高主要源于细砂与粉粒中黑碳的增加;黑碳的生物化学惰性是表层黑碳的主要稳定机制,而深层的黑碳除了其自身抗性外,黏粒矿物的化学保护发挥着重要作用;黑碳不仅作为稳定碳库的主要成分,在颗粒有机碳组分中仍占相当大的比例,因此黑碳的存在提高了土壤稳定性碳储量与碳汇能力.  相似文献   

2.
Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method‐specific composition and storage of BC, i.e. BPCA‐BC, in a 0.44 km2‐sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA‐BC export with the stream draining the catchment. The catchment is composed of various landscape units with south‐southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north‐northeast (NNE) faced mineral soils with thin active layer, and permafrost‐affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA‐BC amounted to 0.6–3.0% of OC. This corresponded to a BC storage of 22–3440 g m?2. The relative contribution of BPCA‐BC to OC, as well as the absolute stocks of BPCA‐BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA‐BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA‐BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA‐BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA‐BC m?2 was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean.  相似文献   

3.
Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.  相似文献   

4.
Biodegradation process and the nature of metabolism of metalaxyl in soil   总被引:1,自引:0,他引:1  
The enhanced biodegradation of metalaxyl was studied in tobacco, citrus, avocado and corn soils. The most rapid degradation of metalaxyl occurred in a tobacco soil in which the half-life (50% degradation) of metalaxyl was 6 days. The main breakdown product of metalaxyl in all soils was the acid metabolite. Ring labelled [14C]metalaxyl incubated for 4 wk in 6 soils demonstrated a low rate of 14CO2 evolution ranging from 2.1% to 11.3% which was unrelated to the biodegradation properties of the soil. A relationship between the concentration of metalaxyl and the subsequent rate of biodegradation was found in the tobacco soils. Higher concentrations of metalaxyl resulted in faster biodegradation rates. A single exposure of tobacco and corn soils to metalaxyl (100 μg/ml or 200 μg/g dry weight of soil) significantly increased their subsequent capacity to degrade the fungicide. Addition of the fungicide thiram or the antibiotics streptomycin and chloramphenicol to an avocado soil resulted in 75% and 51% inhibition of metalaxyl degradation, respectively. A combination of the fungicide and antibiotics resulted in 89% inhibition. The results indicate that enhanced microbial degradation of metalaxyl can occur in a wide range of soils. Under experimental conditions using soil solutions or soil systems, a single application of the fungicide may trigger this event. A wide range of fungi and bacteria appear to take part in degrading metalaxyl.  相似文献   

5.
Denef  Karolien  Six  Johan  Merckx  Roel  Paustian  Keith 《Plant and Soil》2002,246(2):185-200
The mechanisms resulting in the binding of primary soil particles into stable aggregates vary with soil parent material, climate, vegetation, and management practices. In this study, we investigated short-term effects of: (i) nutrient addition (Hoagland's solution), (ii) organic carbon (OC) input (wheat residue), (iii) drying and wetting action, and (iv) root growth, with or without dry–wet cycles, on aggregate formation and stabilization in three soils differing in weathering status and clay mineralogy. These soils included a young, slightly weathered temperate soil dominated by 2:1 (illite and chlorite) clay minerals; a moderately weathered soil with mixed [2:1 (vermiculite) and 1:1 (kaolinite)] clay mineralogy and oxides; and a highly weathered tropical soil dominated by 1:1 (kaolinite) clay minerals and oxides. Air-dried soil was dry sieved through a 250 m sieve to break up all macroaggregates and 100 g-subsamples were brought to field capacity and incubated for 42 days. After 14 and 42 days, aggregate stability was measured on field moist and air-dried soil, to determine unstable and stable aggregation respectively. In control treatments (i.e., without nutrient or organic matter addition, without roots and at constant moisture), the formation of unstable and stable macroaggregates (> 250 m) increased in the order: 2:1 clay soil < mixed clay soil < 1:1 clay soil. After 42 days of incubation, nutrient addition significantly increased both unstable and stable macroaggregates in the 2:1 and 1:1 clay soils. In all soils, additional OC input increased both unstable and stable macroaggregate formation. The increase in macroaggregation with OC input was highest for the mixed clay soil and lowest for the 1:1 clay soil. In general, drying and wetting cycles had a positive effect on the formation of macroaggregates. Root growth caused a decrease in unstable macroaggregates in all soils. Larger amounts of macroaggregates were found in the mixed clay and oxides soil when plants were grown under 50% compared to 100% field capacity conditions. We concluded that soils dominated by variable charge clay minerals (1:1 clays and oxides) have higher potential to form stable aggregates when OC concentrations are low. With additional OC inputs, the greatest response in stable macroaggregate formation occurred in soils with mixed mineralogy, which is probably a result of different binding mechanisms occurring: i.e., electrostatic bindings between 2:1 clays, 1:1 clays and oxides (i.e. mineral-mineral bindings), in addition to OM functioning as a binding agent between 2:1 and 1:1 clays.  相似文献   

6.
Spohn  Marie 《Biogeochemistry》2020,147(3):225-242

Despite the importance of phosphorus (P) as a macronutrient, the factors controlling the pool sizes of organic and inorganic P (OP and IP) in soils are not yet well understood. Therefore, the aim of this study was to gain insights into the pools sizes of OP, IP and organic carbon (OC) in soils and soil particle size fractions. For this purpose, I analyzed the distribution of OP, IP, and OC among particle size fractions depending on geographical location, climate, soil depth, and land use, based on published data. The clay size fraction contained on average 8.8 times more OP than the sand size fraction and 3.9 and 3.2 times more IP and OC, respectively. The OP concentrations of the silt and clay size fraction were both negatively correlated with mean annual temperature (R2 = 0.30 and 0.31, respectively, p < 0.001). The OC:OP ratios of the silt and clay size fraction were negatively correlated with latitude (R2 = 0.49 and 0.34, respectively, p < 0.001). Yet, the OC:OP ratio of the clay size fraction changed less markedly with latitude than the OC:OP ratio of the silt and the sand size fraction. The OC concentrations of all three particle size fractions were significantly (p < 0.05) lower in soils converted to cropland than in adjacent soils under natural vegetation. In contrast, the OP concentration was only significantly (p < 0.05) decreased in the sand size fraction but not in the other two particle size fractions due to land-use change. Thus, the findings suggest that OP is more persistent in soil than OC, which is most likely due to strong sorptive stabilization of OP compounds to mineral surfaces.

  相似文献   

7.
Organic carbon (OC) sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78–85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term OC sequestration.  相似文献   

8.
以黄土高原土壤类型和土壤肥力差异较大的25个农田石灰性耕层土壤为供试土样,研究了土壤微生物量碳(BC)、微生物量氮(BN)与土壤氮素矿化势(NO)、全氮(TN)、有机碳(OC)及土壤颗粒组成的关系.结果表明:BC、BN与TN、OC呈极显著正相关(P〈0.01),表明BC、BN与土壤肥力关系密切,可作为评价土壤质量的生物学指标.BC、BN与NO均呈高度正相关,相关系数分别为0.665和0.741(P〈0.01).BC、BN、TN、OC、NO与土壤物理性粘粒(〈0.01mm)呈显著或极显著正相关,而与物理性砂粒(〉0.01mm)呈显著或极显著负相关,与物理性粘粒和砂粒比值呈显著或极显著正相关,表明土壤有机质主要通过与土壤物理性粘粒复合而形成有机无机复合体.  相似文献   

9.
Chepkwony  C.K.  Haynes  R.J.  Swift  R.S.  Harrison  R. 《Plant and Soil》2001,234(1):83-90
This study assessed the effects of different farming systems, namely woodlot (WL), alley farming (AL), conventional tillage (CT) and natural fallow (NF) on the variability of organic carbon (OC) content and mean weight diameter (MWD) of a degraded Ferric Acrisol in the sub-humid zone of Ghana. The soils under woodlot accumulated the highest amount of organic carbon (18.6 g kg–1) with the least spatial variability apparently due to the greater additions of litter and minimum tillage. The conventionally tilled soil had the least OC content (13.1 g kg–1). Similar to the OC content, the woodlot soils also had the highest aggregate stability (MWD = 1.78 mm) and the least spatial variability. The stability of soil aggregates under the farming systems was greatly influenced by OC content; there was a good correlation between OC and MWD (r > 0.62**). Correlograms showed that OC and MWD are space dependent. The correlation length for OC under the different farming systems followed the order WL > NF > AL > CT, indicating that WL ensured a greater uniform distribution soil organic matter. The spatial distribution in MWD followed the same trend observed for OC. The MWD in the other farming systems was poorly related from point to point with shorter k-values, suggesting lack of uniformity due to low accumulation of OC. Generally, the woodlot system appeared to be a better, low-input restorer of soil productivity.  相似文献   

10.
Controls on soil carbon storage and turnover in German landscapes   总被引:1,自引:0,他引:1  
Soil organic carbon (OC) storage across regions is influenced by climate and parent materials, which determine soil properties like clay content and mineralogy. Within homogeneous soil regions, land use and management practices are further important controls for soil OC contents and turnover. Here, we studied the impact of study region, land use (forest, grassland), forest management (spruce and beech forest under age-class management, unmanaged beech forest), and grassland management (meadow, mown pasture, unmown pasture) on stocks and turnover (based on Δ14C values) of soil OC in density frations of topsoil horizons. Samples were taken from 36 plots in the regions Hainich–Dün (HAI) and the Schwäbische Alb (ALB) in Germany. They were separated into two light fractions (free light fraction (LF1), occluded light fraction (LF2)) and the mineral-associated organic matter (MOM) fraction using sodium polytungstate with a density of 1.6 g cm?3. Overall most soil OC was stored in the MOM fraction (73%). Soil OC concentrations and stocks in the MOM fraction differed between study regions, probably due to larger amounts of pedogenic Al- and Fe-oxides in the ALB than in the HAI region. Within each region, forest soils stored significantly higher proportions of total OC in the two LF (33±1.9 %) than grassland soils (20±2.3 %). Different management of forests and grasslands affected the C:N ratio of density fractions, but not OC storage. While modelled soil OC turnover in the MOM was longest of all fractions, all fractions had average Δ14C values above atmospheric values, suggesting a significant fast-cycling component in all of them. Different from stocks, turnover of OC in the MOM fraction were not affected by study region or contents of pedogenic oxides. Radiocarbon contents in the LF were higher for forest than for grassland sites, indicating faster turnover of OC at grassland sites. However, some of the observed difference could originate from different average lifetimes of roots in forests and grasslands. Applying different lag-times for OC input for forests and grasslands significantly reduced the differences in modelled turnover times. Lower Δ14C values of mown pastures than pasture soils in both regions suggest a management effect on soil C turnover in grasslands.We conclude that OC storage in the MOM of topsoil layers is more affected by regional differences in soil texture and mineralogy than by land use and management, while its turnover could not be explained with the studied soil properties. Soil OC storage and turnover in the two LFs is influenced by land use (forest or grassland) and management, but ecosystem specific lag-times have to be considered for modelling OC turnover in these fractions.  相似文献   

11.
Formation of aggregates by plant roots in homogenised soils   总被引:4,自引:0,他引:4  
The influence of root growth and water regime on the formation of aggregates was studied in modified minirhizotrons under controlled conditions. Two soils, a black earth (67% clay) and a red-brown earth (19% clay) were ground and forced through a 0.5 mm sieve. Ryegrass, pea and wheat were grown for fifteen wetting and drying (wd) cycles for 5 months. Another set of minirhizotrons was not planted and served as a control. Measurements of aggregate size distribution (ASD), aggregate tensile strength (ATS), aggregate stability (AS), aggregate bulk density (ABD) and organic carbon (OC) were made on single aggregates of the 2–4 mm fraction. The results showed that aggregates of the black earth which has a high clay content and shrink/swell properties had more smaller aggregates with higher ATS, AS and ABD than those from the red-brown earth. It was also found that for both soils: (1) w/d cycles and higher root length density (RLD) increased the proportions of smaller aggregates and aggregate strength; (2) differences in the ability of the plant species to influence aggregation was evident and seemed to be related to the RLD. The RLD was in the order ryegrass > wheat > pea. Mechanisms likely to be involved in processes of aggregate formation and stabilization are discussed. They include cracking of soil due to tensile stresses generated during drying of a shrinking soil; changes in pore water pressure within the soil mass caused by water uptake by plant roots generating effective stresses; and biological processes associated with plant roots and root exudates.  相似文献   

12.
The objectives of this paper were to determine the efficiency of physicochemically modified soils with a surfactant in the sorption of pesticides, the stability against washing of the pesticides sorbed, and the effective sorption capacity of surfactant adsorbed by soils as a function of pesticide hydrophobicity and soil characteristics. Five soils of different characteristics and five pesticides (penconazole, linuron, alachlor, atrazine and metalaxyl) with different Kow values were selected and octadecyltrimethylammonium bromide (ODTMA) was chosen as model of cationic surfactants. Sorption-desorption isotherms were obtained and constants Kf and Kfd for natural soils (from Freundlich equation) and K and Kd for ODTMA-soils (from linear equation) were determined. Sorption on ODTMA-soils was higher than on natural soils. K increased 27–165 times for penconazole, 22–77 times for linuron, 7–14 times for alachlor, 9–23 times for atrazine, and 21–333 times for metalaxyl in relation to Kf. Sorption coefficients normalized to 100% of total organic matter (TOM) from organo soils KOM (K 100/%TOM), were always higher than those from natural soils KfOM (Kf 100/%OM), indicating that the organic matter (OM) derived from the ODTMA (OMODTMA) had a greater sorption capacity than the OM of the natural soil. KOM values were also higher than the Kow (octanol/water distribution coefficient) value for each pesticide. The similarity of the high KOM values for the sorption of each pesticide by the five soils and the linearity of isotherms point to a partitioning of the pesticides between surfactant and water. The use in this work of different soils and various pesticides, unusual in this type of investigation, allowed us to obtain equations to know the sorbed amount of a given pesticide by the surfactant-modified soils as a function of the OM content derived from the cation and the Kow of the pesticide. The results obtained are of interest when it becomes necessary to increase the sorption capacity of soils with low OM contents with a view to delaying pesticide mobility in soils from pollution point sources (high concentration in small area), and preventing the pollution of waters.  相似文献   

13.
Unusually high SOC levels have been reported for sandy cropland soils in North-Western Europe. A potential link with their general heathland land-use history was investigated by comparing two soil pairs of relict heathland and cultivated former heathland in the Belgian sandy region. A sequential chemical fractionation yielded similar sizes in corresponding SOM fractions between the heathland and cropland soils (i.e. NaOCl resistant: 12.3–15.0 g C kg−1 and NaOCl + HF resistant: 2.6–5.3 g C kg−1). Higher amounts of clay sized N in the cropland plots can be attributed to N additions from mineral fertilizers and animal manure. Temperature resolved Pyrolysis Field Ionization Mass Spectroscopy analysis showed that the composition of both relict heathland and cultivated soils was surprisingly similar, in spite of over 60 years of intense cropland management. The mass spectra of SOM in both heathland-cropland soil pairs investigated was dominated by signals from lipids, alkylaromatics and sterols. The accumulation of this SOM rich in aliphatics was logically linked to the high input of lipids, long-chain aliphatics and sterols from heathland vegetation and the low soil pH and microbial activity. Based on the relatively high OC surface loadings of HF-extractable OM (13–44 mg C m−2 Fe and 1.2–2.3 mg C m−2 clay), direct organo-mineral bonds between OM and Fe-oxides or clay minerals seem to be only partly involved as a stabilization mechanism in these soils. The distinct bimodal shape of the thermograms indicates that OM-crosslinking could furthermore contribute substantially to SOM stabilization in these soils. This study therefore corroborates the previously proposed view that lipids may be bound in networks of alkylaromatics, the structural building blocks of OM macromolecules. We hypothesize that such binding is able to explain the measured retention of these OM components, even under several decades of cropland management.  相似文献   

14.
Summary The fraction of K released during EUF 30-35 min, 80°C, 400 V (EUF3) and various other soil-K parameters were compared for 24 soils that range widely in clay mineral composition, clay content and percentage K saturation. When EUF3 was compared with fractions of soil-K containing increasing amounts of non-exchangeable K (=selectively adsorbed K), the R2 values decreased with increasing quantities of non-exchangeable K. This indicates that EUF3 is a function of the exchangeable pool of K, although some initially non-exchangeable K is also involved.  相似文献   

15.
Methods of measuring available nutrients in West Indian soils   总被引:1,自引:0,他引:1  
Summary Total K, exchangeable K (NH4OAc method), CH3COOH, cold H2SO4 and boiling HNO3 extractable K were compared with dry matter yield response and K uptake from maize grown on 155 Commonwealth Caribbean soils in greenhouse experiments.Correlation coefficients for soil test values with percentage yield and K uptake were calculated using data from all the soils together and also when the soils were grouped according to pH (< 5.5, 5.5–7.0 and > 7.0), per cent base saturation (< 60, 60–79, 80–99 and 100 per cent), cation exchange capacity (< 10, 10–30 and > 30 me per 100 g) and texture (clays, clay loams and loams and sands). In general, correlations of soil test value with K uptake were superior to those with percentage yield. Total K gave no significant correlations in any of the comparisons. The NH4OAc (exchangeable K) and cold H2SO4 were the most successful methods overall and the least sensitive to changes in soil properties. The CH3COOH extract in general was the least effective. The differing behaviour and the ability of the methods to extract K is discussed in relation to the mineralogy and genesis of the soils which make up the various groups when divided according to the soil properties listed above.  相似文献   

16.
The effect of conversion of grassland to woodland on organic carbon (OC) and total nitrogen (TN) has significance for global change, land resource use and ecosystem management. However, these effects are always variable. Here, we show results of a study in an arid area in China on profile distribution of OC and TN in soils covered by two different woody tree canopies and outer canopy space (grassland between woody plant canopies). The soils were at various slope positions (upper, middle and lower slopes) for Chinese pine (Pinus tabulaeformis) and Korshrinsk peashrub (Caragana korshinskii) lands, and of different soil orders (Castanozems, Skeletal, Loessial and Aeolian soils). The objectives were to relate the effects of land use change on OC and TN to slope position and soil order. Soil OC and TN were significantly larger at Korshrinsk peashrub slope locations than at Chinese pine slope locations. Soil OC and TN were small at the lower slope position for Korshrinsk peashrub, however, they were largest at the middle slope for Chinese pine. Korshrinsk peashrub always increased soil OC and TN under brush canopy at the three slope positions, while Chinese pine increased them at lower slopes and decreased them at upper slopes. For the soil types, OC and TN in Korshrinsk peashrub land were in the order of Castanozems > Skeletal > Loessial > Aeolian soils. Korshrinsk peashrub also increased OC and TN under brush canopy in the four soils. Our results indicated that soil OC and TN in canopy soils differed greatly from associated values in the outer canopy soils, and the effects of grassland afforestation varied significantly with tree species, slope position, and soil type. Therefore, we suggest that differentiating such factors can be an effective approach for explaining variances in OC and N changes caused by land use conversion.  相似文献   

17.
Pepper Phytophthora blight (PPB), caused by Phytophthora capsici, is an important disease of pepper in China. The extensive application of metalaxyl has resulted in widespread resistance to this fungicide in field. This study has evaluated the activities of several fungicides against the mycelial growth and sporangium germination of metalaxyl‐sensitive and metalaxyl‐resistant P. capsici isolates by determination of EC50 values. The results showed that the novel carboxylic acid amide (CAA) fungicide mandipropamid exhibited excellent inhibitory activity against PPB both in vitro and in vivo, with averagely EC50 values of 0.075 and 0.004 μg/ml in mycelial growth and sporangium germination, respectively, and over 88% efficacy in controlling PPB. The other three CAA fungicides also provided over 70% efficacy in controlling PPB. The mycelial growth was less sensitive to quinone outside inhibitor (QoI) fungicides azoxystrobin and trifloxystrobin than that of sporangium germination in P. capsici isolates. However, azoxystrobin and trifloxystrobin provided over 80% efficacy in controlling PPB. It was noted that propamocarb and cymoxanil did not exhibit activity against the mycelial growth or sporangium germination of P. capsici isolates in the in vitro tests, with over 70% efficacy in controlling PPB. The new fungicide mixture 62.5 g/l fluopicolide + 625 g/l propamocarb (trade name infinito, 687.5 g/l suspension concentrate (SC)) produced over 88% efficacy in controlling PPB caused by both metalaxyl‐sensitive and metalaxyl‐resistant isolates. The data of this study also proved that there was obviously no cross‐resistance between metalaxyl and the other tested fungicides. Therefore, these fungicides should be good alternatives to metalaxyl for the control of PPB and management of metalaxyl resistance.  相似文献   

18.
Pythium oligandrum was recovered, identified and quantified from air‐dried soil plated on 1.5% water agar containing 0.1% glucose. Isolations of P. oligandrum over 2 years from soils treated with single applications of metalaxyl plus mancozeb were consistently lower than those from untreated soil from the same fields. In three fields in the first year P. oligandrum was reduced from a range of 43.3–115.0 to 17.0–43.2 isolates g‐1 soil. In the second year, results from 11 fields showed reductions from 27.8–141.8 to 2.8–44.5 isolates g‐1 soil. P. oligandrum was sensitive to both metalaxyl and mancozeb, with median effective dose (ED50) values of 0.13 ± 0.02 μg m‐1 and 3.33 ± 0.12 μg ml‐1, respectively. In a pot test with three soils treated with metalaxyl, mancozeb or the combination of fungicides, levels of P. oligandrum declined over 3 months, with effects first recorded 2 weeks after treatment. Levels of P. oligandrum were reducd by differing degrees in the three soils. Isolate counts from untreated soils declined from a mean of 58.0 g‐1 soil at the start of the experiment to 27.5 g‐1 after 3 months, whereas fungicide treatments caused further reductions to 11.1 (metalaxyl), 9.7 (mancozeb) and 4.8 isolates g‐1 (metalaxyl plus mancozeb).  相似文献   

19.
Komagataeibacter medellinensis ID13488 (formerly Gluconacetobacter medellinensis ID13488) is able to produce crystalline bacterial cellulose (BC) under high acidic growth conditions. These abilities make this strain desirable for industrial BC production from acidic residues (e.g. wastes generated from cider production). To explore the molecular bases of the BC biosynthesis in this bacterium, the genome has been sequenced revealing a sequence of 3.4 Mb containing three putative plasmids of 38.1 kb (pKM01), 4.3 kb (pKM02) and 3.3 Kb (pKM03). Genome comparison analyses of K. medellinensis ID13488 with other cellulose-producing related strains resulted in the identification of the bcs genes involved in the cellulose biosynthesis. Genes arrangement and composition of four bcs clusters (bcs1, bcs2, bcs3 and bcs4) was studied by RT-PCR, and their organization in four operons transcribed as four independent polycistronic mRNAs was determined. qRT-PCR experiments demonstrated that mostly bcs1 and bcs4 are expressed under BC production conditions, suggesting that these operons direct the synthesis of BC. Genomic differences with the close related strain K. medellinensis NBRC 3288 unable to produce BC were also described and discussed.  相似文献   

20.
We confirmed the suitability of electro-ultrafiltration (EUF) for (a) determination of the distribution of potassium fertilizer among the various forms of potassium in soils with a predominance of micaceous minerals in their clay fraction, and (b) investigated the effects of the degree of openness of the dominant micaceous mineral and of incubation time on the kinetics of the EUF extraction of K from these soils.Samples of illitic, mixed-layer and vermiculitic soils from Galicia (N.W. Spain) were incubated at field capacity for 450 days with 0 (blank), 5,15 or 25 mg K (as KCl) per 100 g dry soil. After 1, 30, 150 and 450 days, subsamples were removed and repeatedly extracted using electro-ultrafiltration at low (20° C/200 V) and then high (80° C/400 V) temperature/voltage (6 and 10 five-minute extractions, respectively). Five different pools of K were identified: solution K (Ks), surface and internal K (collectively, Kp), slowly exchangeable K (Ke) and non-exchangeable K (Ki). The effects of increasing the incubation time depended on the dominant clay mineralogy: after 450 days, the K added to illitic soils was mostly solution K, whereas that added to vermiculitic soils was mostly internal K.For both low and high temperature/voltage EUF experiments, the extraction-time data were best fitted by the Elovich equation (extracted K=a+b ln t). The kinetic coefficient b depended on the incubation time and dominant clay mineral, and for given soil and incubation time increased linearly with the dose of added K.Abbreviations EUF Electroultrafiltration - Ks Solution potassium - Kp Easily exchangeable (surface + internal) potassium - Ke Slowly exchangeable potassium - Ki Non-exchangeable potassium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号