共查询到20条相似文献,搜索用时 15 毫秒
1.
Higgins KJ Liu S Abdelrahim M Vanderlaag K Liu X Porter W Metz R Safe S 《Molecular endocrinology (Baltimore, Md.)》2008,22(2):388-402
17beta-Estradiol (E2) induces and represses gene expression in breast cancer cells; however, the mechanisms of gene repression are not well understood. In this study, we show that E2 decreases vascular endothelial growth factor receptor 2 (VEGFR2) mRNA levels in MCF-7 cells, and this gene was used as a model for investigating pathways associated with E2-dependent gene repression. Deletion analysis of the VEGFR2 promoter indicates that the proximal GC-rich motifs at -58 and -44 are critical for the E2-dependent decreased response in MCF-7 cells. Mutation or deletion of these GC-rich elements results in loss of hormone responsiveness and shows that the -60 to -37 region of the VEGFR2 promoter is critical for both basal and hormone-dependent decreased VEGFR2 expression in MCF-7 cells. Western blot, immunofluorescent staining, RNA interference, and EMSAs support a role for Sp proteins in hormone-dependent down-regulation of VEGFR2 in MCF-7 cells, primarily through estrogen receptor (ER)alpha/Sp1 and ERalpha/Sp3 interactions with the VEGFR2 promoter. Using chromatin immuno-precipitation and transient transfection/RNA interference assays we show that the ERalpha/Sp protein-promoter interactions are accompanied by recruitment of the co-repressors SMRT (silencing mediator of retinoid and thyroid hormone receptor) and NCoR (nuclear receptor corepressor) to the promoter and that SMRT and NCoR knockdown reverse E2-mediated down-regulation of VEGFR2 expression in MCF-7 cells. This study illustrates that both SMRT and NCoR are involved in E2-dependent repression of VEGFR2 in MCF-7 cells. 相似文献
2.
3.
Insulin receptor substrate-1 expression is regulated by estrogen in the MCF-7 human breast cancer cell line 总被引:11,自引:0,他引:11
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway. 相似文献
4.
5.
Early growth response-1 (Egr-1) is an immediate-early gene induced by E2 in the rodent uterus and breast cancer cells. E2 induces Egr-1 mRNA and protein levels in MCF-7 human breast cancer cells and reporter gene activity in cells transfected with pEgr-1A, a construct containing the -600 to +12 region of the Egr-1 promoter linked to the firefly luciferase gene. Deletion analysis of the Egr-1 promoter identified a minimal E2-responsive region of the promoter that contained serum response element (SRE)3 (-376 to -350) which bound Elk-1 and serum response factor (SRF) in gel mobility shift assays. Hormone-responsiveness of Egr-1 in MCF-7 cells was specifically inhibited by PD98059, a mitogen-activated protein kinase kinase inhibitor, but not by LY294002, an inhibitor of phosphatidylinositol-3-kinase (PI3-K). These results contrasted with hormone-dependent activation of the SRE in the c-fos promoter, which was inhibited by both PD98059 and LY294002. Differences in activation of the SREs in Egr-1 and c-fos were related to promoter sequence, which defines the affinities of Elk-1 and SRF to their respective binding sites. Thus, Egr-1, like c-fos, is activated through non-genomic (extranuclear) pathways of estrogen action in breast cancer cells. 相似文献
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol 总被引:2,自引:0,他引:2
Hung H 《Journal of cellular physiology》2004,198(2):197-208
Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro. 相似文献
16.
17.
Regulation of the estrogen receptor in MCF-7 cells by estradiol 总被引:11,自引:0,他引:11
M Saceda M E Lippman P Chambon R L Lindsey M Ponglikitmongkol M Puente M B Martin 《Molecular endocrinology (Baltimore, Md.)》1988,2(12):1157-1162
18.
Gambino YP Pérez Pérez A Dueñas JL Calvo JC Sánchez-Margalet V Varone CL 《Biochimica et biophysica acta》2012,1823(4):900-910
The placenta produces a wide number of molecules that play essential roles in the establishment and maintenance of pregnancy. In this context, leptin has emerged as an important player in reproduction. The synthesis of leptin in normal trophoblastic cells is regulated by different endogenous biochemical agents, but the regulation of placental leptin expression is still poorly understood. We have previously reported that 17β-estradiol (E(2)) up-regulates placental leptin expression. To improve the understanding of estrogen receptor mechanisms in regulating leptin gene expression, in the current study we examined the effect of membrane-constrained E(2) conjugate, E-BSA, on leptin expression in human placental cells. We have found that leptin expression was induced by E-BSA both in BeWo cells and human placental explants, suggesting that E(2) also exerts its effects through membrane receptors. Moreover E-BSA rapidly activated different MAPKs and AKT pathways, and these pathways were involved in E(2) induced placental leptin expression. On the other hand we demonstrated the presence of ERα associated to the plasma membrane of BeWo cells. We showed that E(2) genomic and nongenomic actions could be mediated by ERα. Supporting this idea, the downregulation of ERα level through a specific siRNA, decreased E-BSA effects on leptin expression. Taken together, these results provide new evidence of the mechanisms whereby E(2) regulates leptin expression in placenta and support the importance of leptin in placental physiology. 相似文献
19.
20.
Upregulation of hepatic prolactin receptor gene expression by 17beta-estradiol following trauma-hemorrhage. 总被引:1,自引:0,他引:1
Yukihiro Yokoyama Williams C Kitchens Balazs Toth Martin G Schwacha Kirby I Bland Irshad H Chaudry 《Journal of applied physiology》2003,95(6):2530-2536
Although studies show protective effects of 17beta-estradiol (E2) or prolactin (PRL) treatment in male rats after trauma-hemorrhage (TH), the mechanism of the salutary effects of these agents remains unknown. Because E2 modulates PRL receptor (PRL-R) expression in the liver, we examined whether E2 treatment after T-H has any effects on hepatic PLR-R gene expression. Male Sprague-Dawley rats were subjected to trauma (i.e., 5-cm midline laparotomy) and hemorrhage (35-40 mmHg for 90 min) followed by fluid resuscitation (Ringer lactate) or sham operation and then treated with E2 (50 microg/kg body wt sc) or vehicle immediately before resuscitation. Liver samples were collected at 3 h thereafter, and PRL-R mRNA expression was determined by PCR. Liver expression of PRL-R short-form gene was unaffected by T-H, whereas that of the long-form gene was suppressed. Treatment of T-H rats with E2 significantly increased PRL-R short-form gene expression and normalized PRL-R long-form gene expression to sham levels. In the isolated hepatocytes, PRL-R short-form gene expression was predominant compared with the long-form gene. In contrast, only the short form was detected in Kupffer cells. In vitro treatment by E2 demonstrated an increase in the PRL-R long-form gene in hepatocytes, but E2 had no effect on PRL-R short-form gene expression in either the Kupffer cells or hepatocytes. Thus E2 treatment after T-H in males appears to directly upregulate PRL-R long-form gene expression in hepatocytes. However, the upregulation of the PRL-R short form might involve the interaction of multiple cell types in the liver. 相似文献