首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-alpha antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). TNF-alpha might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-kappaB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.  相似文献   

2.
We studied estrogen effects on osteoclastic differentiation using RAW264.7, a murine monocytic cell line. Differentiation, in response to RANKL and colony-stimulating factor 1, was evaluated while varying estrogen receptor (ER) stimulation by estradiol or nonsteroidal ER agonists was performed. The RAW264.7 cells were found to express ERalpha but not ERbeta. In contrast to RANKL, which decreased ERalpha expression and induced osteoclast differentiation, 10 nm estradiol, 3 microm genistein, or 3 microm daidzein all increased ERalpha expression, stimulated cell proliferation, and decreased multinucleation, with the effects of estrogen > or = daidzein > genistein. However, no estrogen agonist reduced RANKL stimulation of osteoclast differentiation markers or its down-regulation of ERalpha expression by more than approximately 50%. Genistein is also an Src kinase antagonist in vitro, but it did not decrease Src phosphorylation in RAW264.7 cells relative to other estrogen agonists. However, both phytoestrogens and estrogen inhibited RANKL-induced IkappaB degradation and NF-kappaB nuclear localization with the same relative potency as seen in proliferation and differentiation assays. This study demonstrates, for the first time, the direct effects of estrogen on osteoclast precursor differentiation and shows that, in addition to effecting osteoblasts, estrogen may protect bone by reducing osteoclast production. Genistein, which activates ERs selectively, inhibited osteoclastogenesis less effectively than the nonselective phytoestrogen daidzein, which effectively reproduced effects of estrogen.  相似文献   

3.
4.
5.
Hyaluronic acid (HA) is a component of the extracellular matrix that has been shown to play an important role in bone formation, resorption, and mineralization both in vivo and in vitro. We examined the effects of HA at several molecular weights on osteoclast formation and function induced by RANKL (receptor activator of NF-kappa B ligand) in a mouse monocyte cell line (RAW 264.7). HA at M(r) < 8,000 (low molecular weight HA (LMW-HA)) enhanced tartrate-resistant acid phosphatase-positive multinucleated cell formation and tartrate-resistant acid phosphatase activity induced by RANKL in a dose-dependent manner, whereas HA at M(r) > 900,000 (high molecular weight HA (HMW-HA)) showed no effect on osteoclast differentiation. LMW-HA enhanced pit formation induced by RAW 264.7 cells, whereas HMW-HA did not, and LMW-HA stimulated the expression of RANK (receptor activator of NF-kappa B) protein in RAW 264.7 cells. In addition, we found that LMW-HA enhanced the levels of c-Src protein and phosphorylation of ERKs and p38 MAPK in RAW 264.7 cells stimulated with RANKL, whereas the p38 MAPK inhibitor SB203580 inhibited RANKL-induced osteoclast differentiation. This enhancement of c-Src and RANK proteins induced by LMW-HA was inhibited by CD44 function-blocking monoclonal antibody. These results indicate that LMW-HA plays an important role in osteoclast differentiation and function through the interaction of RANKL and RANK.  相似文献   

6.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

7.
8.
TGF-beta increases bone resorption in vivo and greatly increases osteoclast formation stimulated by receptor activator of NF-kappaB ligand (RANKL) in vitro. TGF-beta does not independently affect the differentiation state of RAW264.7 preosteoclasts, but increases cell attachment to vitronectin. This effect is mediated by increased expression of alphaV integrin subunit mRNA and protein. Concomitant with induction of osteoclast differentiation, RANKL causes relocation of alphaV to focal sites in the cell. This effect is potentiated by TGF-beta. Integrin blockade disrupts both attachment to vitronectin and RANKL-induced osteoclast formation, but culture on vitronectin has little effect. Ectopic expression of alphaV stimulates multinucleation of RAW264.7 cells and increases the number of osteoclasts formed in the presence of RANKL. These data suggest that TGF-beta potentiates RANKL-induced osteoclast formation, in part by increased expression of the alphaV integrin subunit, which may contribute to cell fusion.  相似文献   

9.
MicroRNAs are involved in osteoclast differentiation. Although miR-199a-5p plays an important role in many different systems and diseases, its function during osteoclastogenesis remains unclear. In this study, we investigated the function and the target gene of miR-199a-5p in osteoclast differentiation. The in vitro data showed that miR-199a-5p was significantly upregulated after the stimulation by receptor activator of nuclear factor kappa-B ligand in macrophages and RAW 264.7 cells. After transfection of miR-199a-5p mimic, the messenger RNA expression level of nuclear factor of activated T-cells cytoplasmic 1, tartrate-resistant acid phosphatase (TRAP), and receptor activator of nuclear factor kappa-B was significantly increased in RAW 264.7 cells and the number of TRAP-positive cells was also increased. MiR-199a-5p inhibitor showed the complete opposite outcome which brought additional proof to our finding. Overexpression of miR-199a-5p led to downregulation of Mafb protein. The luciferase activity was obviously repressed when WT-pGL3-Mafb and miR-199a-5p mimics were cotransfected into 293 T cells and the inhibitors cotransfected demonstrated reverse result. MiR-199a-5p overexpressed during osteoclast differentiation and positively regulated osteoclast formation in vitro by target Mafb.  相似文献   

10.
11.
Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor κB ligand (RANKL) or tumor necrosis factor (TNF)-α. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D3 and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.  相似文献   

12.
13.
14.
During osteoporosis, fat mass and obesity-associated protein (FTO) promotes the shift of bone marrow mesenchymal stem cells to adipocytes and represses osteoblast activity. However, the role and mechanisms of FTO on osteoclast formation and bone resorption remain unknown. In this study, we investigated the effect of FTO on RAW264.7 cells and bone marrow monocytes (BMMs)-derived osteoclasts in vitro and observed the influence of FTO on ovariectomized (OVX) mice model to mimic postmenopausal osteoporosis in vivo. Results found that FTO was up-regulated in BMMs from OVX mice. Double immunofluorescence assay showed co-localization of FTO with tartrate-resistant acid phosphatase (TRAP) in femurs of OVX mice. FTO overexpression enhanced TRAP-positive osteoclasts and F-actin ring formation in RAW264.7 cells upon RANKL stimulation. The expression of osteoclast differentiation-related genes, including nuclear factor of activated T cells c1 (NFATc1) and c-FOS, was upregulated in BMMs and RAW264.7 cells after FTO overexpression. FTO overexpression induced the phosphorylation and nuclear translocation of factor-kappa B (NF-κB) p65 in BMMs and RAW264.7 cells exposed to RANKL. ChIP and dual-luciferase assays revealed that FTO overexpression contributed to RANKL-induced binding of NF-κB to NFATc1 promoter. Rescue experiments suggested that FTO overexpression-mediated osteoclast differentiation was suppressed after intervention with a NF-κB inhibitor pyrrolidine dithiocarbamate. Further in vivo evidence revealed that FTO knockdown increased bone trabecula and bone mineral density, inhibited bone resorption and osteoclastogenesis in osteoporotic mice. Collectively, our research demonstrates that downregulated FTO inhibits bone resorption and osteoclastogenesis through NF-κB inactivation, which provides a novel reference for osteoporosis treatment.  相似文献   

15.
16.
17.
Prostaglandin E2 (PGE2) synergistically enhances the receptor activator for NF-kappa B ligand (RANKL)-induced osteoclastic differentiation of the precursor cells. Here we investigated the mechanisms of the stimulatory effect of PGE2 on osteoclast differentiation. PGE2 enhanced osteoclastic differentiation of RAW264.7 cells in the presence of RANKL through EP2 and EP4 prostanoid receptors. RANKL-induced degradation of I kappa B alpha and phosphorylation of p38 MAPK and c-Jun N-terminal kinase in RAW264.7 cells were up-regulated by PGE2 in a cAMP-dependent protein kinase A (PKA)-dependent manner, suggesting that EP2 and EP4 signals cross-talk with RANK signals. Transforming growth factor beta-activated kinase 1 (TAK1), an important MAPK kinase kinase in several cytokine signals, possesses a PKA recognition site at amino acids 409-412. PKA directly phosphorylated TAK1 in RAW264.7 cells transfected with wild-type TAK1 but not with the Ser412 --> Ala mutant TAK1. Ser412 --> Ala TAK1 served as a dominant-negative mutant in PKA-enhanced degradation of I kappa B alpha, phosphorylation of p38 MAPK, and PGE2-enhanced osteoclastic differentiation in RAW264.7 cells. Furthermore, forskolin enhanced tumor necrosis factor alpha-induced I kappa B alpha degradation, p38 MAPK phosphorylation, and osteoclastic differentiation in RAW264.7 cells. Ser412 --> Ala TAK1 abolished the stimulatory effects of forskolin on those cellular events induced by tumor necrosis factor alpha. Ser412 --> Ala TAK1 also inhibited the forskolin-induced up-regulation of interleukin 6 production in RAW264.7 cells treated with lipopolysaccharide. These results suggest that the phosphorylation of the Ser412 residue in TAK1 by PKA is essential for cAMP/PKA-induced up-regulation of osteoclastic differentiation and cytokine production in the precursor cells.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号