首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate whether activity of the sarcolemmal Na pump modulates the influence of sodium current on excitation-contraction (E-C) coupling, we measured [Ca(2+)](i) transients (fluo-3) in single voltage-clamped mouse ventricular myocytes ([Na+](pip) = 15 or 0 mM) when the Na pump was activated (4.4 mM K(+)(o)) and during abrupt inhibition of the pump by exposure to 0 K with a rapid solution-switcher device. After induction of steady state [Ca2+](i) transients by conditioning voltage pulses (0.25 Hz), inhibition of the Na pump for 1.5 s immediately before and continuing during a voltage pulse (200 ms, -80 to 0 mV) caused a significant increase (15 +/- 2%; n = 16; p < 0.01) in peak systolic [Ca2+](i) when [Na+](pip) was 15 mM. In the absence of sodium current (I(Na), which was blocked by 60 microM tetrodotoxin (TTX)), inhibition of the Na pump immediately before and during a voltage pulse did not result in an increase in peak systolic [Ca2+](i). Abrupt blockade of I(Na) during a single test pulse with TTX caused a slight decrease in peak [Ca2+](i), whether the pump was active (9%) or inhibited (10%). With the reverse-mode Na/Ca exchange inhibited by KB-R 7943, inhibition of the Na pump failed to increase the magnitude of the peak systolic [Ca2+](i) (4 +/- 1%; p = NS) when [Na+](pip) was 15 mM. When [Na+](pip) was 0 mM, the amplitude of the peak systolic [Ca2+](i) was not altered by abrupt inhibition of the Na pump immediately before and during a voltage pulse. These findings in adult mouse ventricular myocytes indicate the Na pump can modulate the influence of I(Na) on E-C coupling in a single beat and provide additional evidence for the existence of Na fuzzy space, where [Na+] can significantly modulate Ca2+ influx via reverse Na/Ca exchange.  相似文献   

2.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

3.
We investigated the characteristics of the changes in intracellular calcium (Ca2+) concentration ([Ca2+](i)) and the viability of the unfertilized mouse oocytes exposed to various concentrations of ethylene glycol (EG)-containing solutions or vitrification solutions. Oocytes exposed to EG (1, 5, 10, 20, and 40% (v/v)) exhibited a rapid and dose-dependent increase in [Ca2+](i). The survival rate was 100% when oocytes were exposed to the EG concentration up to 5% through 5 min, while all oocytes were dead within 3 min when exposed to 10, 20, or 40% EG. When extracellular Ca2+ was removed, increase in [Ca2+](i) at 10 and 20% EG was less than that at the same concentrations of EG with extracellular Ca2+. The survival rates of the oocytes exposed to 10, 20, and 40% EG at 3 min were 100, 97, and 0%, respectively. In the presence of 20 microM 1,2-bis(o-aminopheoxy)ethane-N,N,N',N'-tetraacetic acid tetra acetoxymethyl ester (BAPTA-AM), a Ca2+ chelator, a small increase in [Ca2+](i) exposed to 10, 20, and 40% EG was observed until 4 min. Subsequently prolonged elevation of the [Ca2+](i) was observed in the oocytes exposed to 40% EG but not with 10 and 20% EG. The survival rate of the oocytes, in the presence of 20 microM BAPTA-AM, exposed to 10 and 20% EG was 100% throughout 5 min, while the oocytes exposed to 40% EG were alive only for 3 min. Treatment by the vitrification solution with various concentrations of EG (10, 20, and 40%) caused a smaller increase in [Ca2+](i), while the survival rates were higher compared to those without vitrification solution at the same concentrations of EG. These data suggested that the sustained [Ca2+](i) rises by EG in unfertilized mouse oocytes resulted in cell death. Therefore, the lowering of [Ca2+](i) in the oocytes exposed to the cryoprotectant may improve the viability of cryopreserved unfertilized oocytes.  相似文献   

4.
The Ca2+ indicator photoprotein, aequorin, was used to estimate and monitor intracellular Ca2+ levels in Limulus ventral photoreceptors during procedures designed to affect Na+/Ca2+ exchange. Dark levels of [Ca2+]i were estimated at 0.66 +/- 0.09 microM. Removal of extracellular Na+ caused [Ca2+]i to rise transiently from an estimated 0.5-0.6 microM in a typical cell to approximately 21 microM; [Ca2+]i approached a plateau level in 0-Na+ saline of approximately 5.5 microM; restoration of normal [Na+]o lowered [Ca2+]i to baseline with a time course of 1 log10 unit per 9 s. The apparent rate of Nao+-dependent [Ca2+]i decline decreased with decreasing [Ca2+]i. Reintroduction of Ca2+ to 0-Na+, 0-Ca2+ saline in a typical cell caused a transient rise in [Ca2+]i from an estimated 0.36 microM (or lower) to approximately 16.5 microM. This was followed by a decline in [Ca2+]i approaching a plateau of approximately 5 microM; subsequent removal of Cao2+ caused [Ca2+]i to decline slowly (1 log unit in approximately 110 s). Intracellular injection of Na+ in the absence of extracellular Na+ caused a transient rise in [Ca2+]i in the presence of normal [Ca2+]o; in 0-Ca2+ saline, however, no such rise in [Ca2+]i was detected. Under constant voltage clamp (-80 mV) inward currents were measured after the addition of Nao+ to 0-Na+ 0-Ca2+ saline and outward currents were measured after the addition of Cao2+ to 0-Na+ 0-Ca2+ saline. The results suggest the presence of an electrogenic Na+/Ca2+ exchange process in the plasma membrane of Limulus ventral photoreceptors that can operate in forward (Nao+-dependent Ca2+ extrusion) or reverse (Nai+-dependent Ca2+ influx) directions.  相似文献   

5.
The inside-out mode of the patch-clamp method was used to study the effects of internal Mg2+ on single large-conductance (193+/-7 pS) Ca(2+)-activated K+ channels in cultured kidney cells. In the absence of Ca2+, Mg2+ (1 to 10 mM) did not activate the channels but modified the activating effect of Ca2+ ions: it decreased the Hill coefficient (n), reduced the apparent dissociation constant (K0.5), and modified the channel open and closed times. K0.5 was found to be a voltage-dependent parameter. In the absence of Mg2+, it averaged 600 microM at -20 mV and 27 microM at +30 mV (22 degrees C, pH 6.8). Mg2+ at saturating concentrations (5 to 10 mM) decreased K0.5 to 50 microM at -20 mV and to 15 microM at +30 mV. Irrespective of the membrane potential, K0.5 tended to its limit value of about 12.6 microM. Thus, the effects of membrane depolarization and Mg2+ exhibited a non-additive, competitive relationship. Mg2+ perturbed the exponential shape of the voltage dependences of K0.5. The Hill coefficient characterizing the interaction of Ca2+ ions with the channels was found to be voltage-dependent. In the absence of Mg2+, it increased rather sharply from approx. 2 to 3.5 when the membrane potential was raised from -10 to 0 mV. Mg2+ increased n in a dose-dependent manner; however, about a twofold increase of n occurred within a narrow concentration range (2 to 3 mM). The action of Mg2+ on n was, apparently, voltage-independent, and the effects of Mg2+ and voltage on n were seemingly additive.  相似文献   

6.
The impact of mercuric ions (Hg(2+)) on prawn oocytes was examined. Prawn oocytes constitute an unusual system in that they are activated at spawning by seawater Mg(2+), which mediates correlated dynamic changes in intracellular free calcium concentration [(Ca(2+))(i)] and membrane conductance associated with the meiosis resumption. Using a voltage clamp technique and intracellular calcium measurements, we observed that treatment with Hg(2+) (5, 10, and 20 microM) resulted in simultaneous impairments of both (Ca(2+))(i) and membrane current responses to external Mg(2+). Treatment with Hg(2+) also resulted in a gradual dose-dependent slow increase in the baseline level of both (Ca(2+))(i) and membrane conductance, independent of stimulation with external Mg(2+). The effect of Hg(2+) on (Ca(2+))(i) and membrane conductance changes resulted from a block of the signal transduction pathway at some point before the InsP(3) receptor channel involved in Ca(2+) release from the endoplasmic reticulum (ER) stocks. The Hg(2+)-dependent gradual increase in both (Ca(2+))(i) and membrane conductance baseline levels may potentially result from a slow permeabilization of the ER membrane, resulting in Ca(2+) leaking into the cytosol. Indeed, this effect could be blocked with the cell permeable Hg(2+) competitor dithiothreitol, which was able to displace Hg(2+) from its intracellular target regardless of whether external Ca(2+) was present or not.  相似文献   

7.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

8.
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.  相似文献   

9.
The transient responses of sheep cardiac and rabbit skeletal ryanodine receptors (RyRs) to step changes in membrane potential and cytosolic [Ca2+] were measured. Both cardiac and skeletal RyRs have two voltage-dependent inactivation processes (tau approximately 1-3 s at +40 mV) that operate at opposite voltage extremes. Approximately one-half to two-thirds of RyRs inactivated when the bilayer voltage was stepped either way between positive and negative values. Inactivation was not detected (within 30 s) in RyRs with Po less than 0.2. Inactivation rates increased with intraburst open probability (Po) and in proportion to the probability of a long-lived, RyR open state (P(OL)) RyR inactivation depended on P(OL) and not on the particular activator (Ca2+ (microM), ATP, caffeine, and ryanodine), inhibitor (mM Ca2+ and Mg2+), or gating mode. The activity of one-half to two-thirds of RyRs declined (i.e., the RyRs inactivated) after [Ca2+] steps from subactivating (0.1 microM) to activating (1-100 microM) levels. This was due to the same inactivation mechanism responsible for inactivation after voltage steps. Both forms of inactivation had the same kinetics and similar dependencies on Po and voltage. Moreover, RyRs that failed to inactivate after voltage steps also did not inactivate after [Ca2+] steps. The inactivating response to [Ca2+] steps (0.1-1 microM) was not RyRs "adapting" to steady [Ca2+] after the step, because a subsequent step from 1 to 100 microM failed to reactivate RyRs.  相似文献   

10.
We recorded Ca2+ current and intracellular Ca2+ ([Ca2+](i)) in isolated adult rat dorsal root ganglion (DRG) neurons at 20 and 30 degrees C. In neurons bathed in tetraethylammonium and dialyzed with cesium, warming reduced resting [Ca2+](i) from 87 to 49 nM and the time constant of the decay of [Ca2+](i) transients (tau(r)) from 1.3 to 0.99s (Q(10)=1.4). The Buffer Index, the ratio between Ca2+ influx and Delta[Ca2+](i) (f I(ca)d(t)/Delta[Ca2+]i) , increased two- to threefold with warming. Neither inhibition of the plasma membrane Ca2+ -ATPase by intracellular sodium orthovanadate nor inhibition of Ca2+ uptake by the endoplasmic reticulum by thapsigargin plus ryanodine were necessary for the effects of warming on these parameters. In contrast, inhibition of the mitochondrial Ca2+ uniporter by intracellular ruthenium red largely reversed the effects of warming. Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 500 nM) increased resting [Ca2+](i) at 30 degrees C. Ten millimolar intracellular sodium prolonged the recovery of [Ca2+](i) transients to 10-40s. This effect was reversed by an inhibitor of mitochondrial Na(+)/Ca2+ -exchange (CGP 37157, 10 microM). Thus, mitochondrial Ca2+ uptake is necessary for the temperature-dependent increase in Ca2+ buffering and mitochondrial Ca2+ fluxes contribute to the control of [Ca2+](i) between 50 and 150 nM at 30 degrees C.  相似文献   

11.
CICR from an intracellular store, here directly characterized as the ER, usually refers to net Ca(2)+ release that amplifies evoked elevations in cytosolic free calcium [Ca2+](i). However, the companion paper (Albrecht, M.A., S.L. Colegrove, J. Hongpaisan, N.B. Pivovarova, S.B. Andrews, and D.D. Friel. 2001. J. Gen. Physiol. 118:83-100) shows that in sympathetic neurons, small [Ca2+](i) elevations evoked by weak depolarization stimulate ER Ca accumulation, but at a rate attenuated by activation of a ryanodine-sensitive CICR pathway. Here, we have measured depolarization-evoked changes in total ER Ca concentration ([Ca](ER)) as a function of [Ca2+](i), and found that progressively larger [Ca2+](i) elevations cause a graded transition from ER Ca accumulation to net release, consistent with the expression of multiple modes of CICR. [Ca](ER) is relatively high at rest (12.8 +/- 0.9 mmol/kg dry weight, mean +/- SEM) and is reduced by thapsigargin or ryanodine (5.5 +/- 0.7 and 4.7 +/- 1.1 mmol/kg, respectively). [Ca](ER) rises during weak depolarization (to 17.0 +/- 1.6 mmol/kg over 120s, [Ca2+](i) less than approximately 350 nM), changes little in response to stronger depolarization (12.1 +/- 1.1 mmol/kg, [Ca2+](i) approximately 700 nM), and declines (to 6.5 +/- 1.0 mmol/kg) with larger [Ca2+](i) elevations (>1 microM) evoked by the same depolarization when mitochondrial Ca2+ uptake is inhibited (FCCP). Thus, net ER Ca2+ transport exhibits a biphasic dependence on [Ca2+](i). With mitochondrial Ca2+ uptake enabled, [Ca](ER) rises after repolarization (to 16.6 +/- 1.8 mmol/kg at 15 min) as [Ca2+](i) falls within the permissive range for ER Ca accumulation over a period lengthened by mitochondrial Ca2+ release. Finally, although spatially averaged [Ca](ER) is unchanged during strong depolarization, net ER Ca2+ release still occurs, but only in the outermost approximately 5-microm cytoplasmic shell where [Ca2+](i) should reach its highest levels. Since mitochondrial Ca accumulation occurs preferentially in peripheral cytoplasm, as demonstrated here by electron energy loss Ca maps, the Ca content of ER and mitochondria exhibit reciprocal dependencies on proximity to sites of Ca2+ entry, possibly reflecting indirect mitochondrial regulation of ER Ca(2)+ transport.  相似文献   

12.
Although recent studies focused on the contribution of mitochondrial Ca2+ to the mechanisms of ischemia-reperfusion injury, the regulation of mitochondrial Ca2+ under pathophysiological conditions remains largely unclear. By using saponin-permeabilized rat myocytes, we measured mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial Ca2+ concentration ([Ca2+](m)) at the physiological range of cytosolic Ca2+ concentration ([Ca2+](c); 300 nM) and investigated the regulation of [Ca2+](m) during both normal and dissipated DeltaPsi(m). When DeltaPsi(m) was partially depolarized by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP, 0.01-0.1 microM), there were dose-dependent decreases in [Ca2+](m). When complete DeltaPsi(m) dissipation was achieved by FCCP (0.3-1 microM), [Ca2+](m) remained at one-half of the control level despite no Ca2+ influx via the Ca2+ uniporter. The DeltaPsi(m) dissipation by FCCP accelerated calcein leakage from mitochondria in a cyclosporin A (CsA)-sensitive manner, which indicates that DeltaPsi(m) dissipation opened the mitochondrial permeability transition pore (mPTP). After FCCP addition, inhibition of the mPTP by CsA caused further [Ca2+](m) reduction; however, inhibition of mitochondrial Na+/Ca2+ exchange (mitoNCX) by a Na+-free solution abolished this [Ca2+](m) reduction. Cytosolic Na(+) concentrations that yielded one-half maximal activity levels for mitoNCX were 3.6 mM at normal DeltaPsi(m) and 7.6 mM at DeltaPsi(m) dissipation. We conclude that 1) the mitochondrial Ca2+ uniporter accumulates Ca2+ in a manner that is dependent on DeltaPsi(m) at the physiological range of [Ca2+](c); 2) DeltaPsi(m) dissipation opens the mPTP and results in Ca2+ influx to mitochondria; and 3) although mitoNCX activity is impaired, mitoNCX extrudes Ca2+ from the matrix even after DeltaPsi(m) dissipation.  相似文献   

13.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

14.
Stimulation of many nonexcitable cells by Ca2(+)-mobilizing receptor agonists causes oscillating elevations of the intracellular free Ca2+ concentration ((Ca2+]i), rather than a continuous increase. It has been proposed that the frequency at which [Ca2+]i oscillates determines the biological response. Because the occurrence of [Ca2+] oscillations is observed together with endogenous inositol polyphosphate (InsPs) production or following InsPs application, we injected Xenopus laevis oocytes with InsPs and monitored Ca2(+)-activated Cl- currents as an assay of [Ca2+]i. Microinjection of the poorly metabolizable inositol trisphosphate (InsP3) derivatives inositol 2,4,5-trisphosphate (Ins(2,4,5)P3) and inositol 1,4,5-trisphosphorothioate (Ins(1,4,5) P3S3) induced [Ca2+]i oscillations. The frequency at which [Ca2+]i oscillated increased with the injected dose, indicating that the frequency-generating mechanism lies distal to InsP3 production and that generation of oscillations does not require either oscillation of InsP3 levels or InsP3 metabolism. Injections of high doses of Ins(1,4,5)P3 or Ins(2,4,5)P3 inhibited ongoing oscillations, whereas Ca2+ injections decreased the amplitude of Ins(2,4,5)P3-induced oscillations without altering their frequency. Injections of the Ins(1,4,5)P3 metabolite inositol 1,3,4,5-tetrakisphosphate also caused oscillations whose frequency was related to the injected dose, although inositol tetrakisphosphate injection induced an increase in the cellular level of Ins(1,4,5)P3. The results suggest a multicomponent oscillatory system that includes the InsP3 target as well as a Ca2(+)-sensitive step that modulates amplitude.  相似文献   

15.
Intracellular applications of a fixed amount (0.2 to 8 nmol) of inositol 1,4,5-trisphosphate (InsP3) over a brief period (2 s) into barnacle muscle fibers induced vigorous contractures. Peak tension attained during the first application depended on [InsP3]: the maximum tension evoked by the injection of 8 nmol was 1.6 kg/cm2. Peak tension during a second application of a high dose of InsP3 (greater than 10 microM) was always smaller than that during the first application. Extracellular Ca2+ could be omitted with no measurable effects on either the amplitude or time course of the contractures evoked by InsP3. Aequorin was used to measure InsP3-evoked Ca2+ release from intracellular stores in minced muscle fibers from lobster and in skinned muscle fibers from barnacle. Provided the sarcoplasmic reticulum was preloaded with Ca2+, application of InsP3 induced a transient Ca2+ release that was [InsP3] dependent. During each transient, [Ca2+] rose rapidly to a peak value (t1/2 less than 5 s) and then slowly returned (t1/2 less than 100 s) to a basal level. Maximum Ca2+ release was obtained at [InsP3] less than 100 microM and amounted to 4 nmol Ca2+/g of muscle, enough to increase [Ca2+]i from 0.1 to 8 microM had the Ca2+ release occurred in the intact fiber. Successive applications of a fixed amount of InsP3 elicited successive transient increases in Ca2+. The effects of [Ca2+] on the incorporation of [3H]inositol into the pools of phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate pools were measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The inhibitory effects of caffeine on receptor-activated cytosolic Ca2+ signal generation in isolated mouse pancreatic acinar cells were investigated. Using the ability of caffeine to quench Indo-1 fluorescence we measured simultaneously the free intracellular Ca2+ concentration ([Ca2+]i) and the intracellular caffeine concentration ([caffeine]i). We also measured inositol 1,4,5-trisphosphate (InsP3) production with a radioreceptor assay. When caffeine was added to the extracellular solution during a sustained receptor-activated increase in [Ca2+]i, [caffeine]i rose to its steady level within a few seconds. This was accompanied by a decrease of [Ca2+]i, which started only after [caffeine]i had reached an apparent threshold concentration (about 2 mM in the case of 0.5 microM acetylcholine (ACh) stimulation). Above this [caffeine]i level there was a linear relationship between [caffeine]i and [Ca2+]i. Throughout the caffeine exposure [Ca2+]i remained at a steady low level. Following removal of caffeine from the bath, [caffeine]i decreased to zero within seconds. There was no significant increase in [Ca2+]i until [caffeine]i had been reduced to the threshold level (about 2 mM at 0.5 microM ACh). Caffeine inhibited Ca2+ signals evoked by ACh, cholecystokinin, and ATP and also inhibited signals generated in the absence of external Ca2+. Caffeine application had the same effect as removal of agonist allowing recovery from apparent desensitization. Caffeine inhibited the agonist-evoked production of InsP3 in a dose-dependent manner. Our results demonstrate the acute and reversible dose-dependent inhibition of agonist-evoked cytosolic Ca2+ signal generation due to rapid intracellular caffeine accumulation and washout. The inhibition can be explained by the reduction of agonist-evoked InsP3 production.  相似文献   

17.
Pituitary folliculostellate cells (FSCs) are thought to partially inhibit pituitary hormone secretion through a paracrine mechanism. In this process, one of the important questions is what factors regulate the function of FSCs. Because ACh is synthesized in and possibly released from the corticotrophs and lactotrophs, we examined whether FSCs respond to ACh by the method of Ca2+ imaging in primary cultured FSCs from male Wistar rats. ACh (30 nM-3 microM) increased intracellular calcium concentration ([Ca2+](i)) of FSCs in a concentration-dependent manner, with an initial rapid rise followed by a relatively sustained increase. The complete block of the response by atropine and pirenzepine suggests involvement of muscarinic receptors. Depletion of the stored Ca2+ by thapsigargin blocked the response completely. Blockers of phospholipase C, U-73122 and neomycin, suppressed significantly the rise of [Ca2+](i). These results suggest that ACh increases [Ca2+](i) in FSCs by activating phospholipase C, presumably through activation of M(1) receptors. The rise in [Ca2+](i) could trigger a variety of Ca2+-dependent cellular processes, including the synthesis and release of bioactive substances, which in turn act on endocrine cells.  相似文献   

18.
Ca2+ transients (measured with Fluo-3) were induced in single mouse ovarian oocytes by photolytic liberation of InsP3. The time course of cytosolic Ca2+ changes induced in this way is composed of distinct phases: upstroke, fast decline, slow declining plateau and fast decline to rest level. All the phases reflect mainly intracellular redistributions of the ion and not influx, since they are not strongly dependent on external Ca2+ or on changes in transmembrane potential. Often sustained Ca2+ oscillations followed the first InsP3-induced Ca2+ transient. These persisted for several minutes in the absence of external Ca2+. The initial rate of Ca2+ rise and the delay between the InsP3 stimulus and Ca2+ upstroke are correlated with the amount of liberated InsP3. A second InsP3 stimulation, applied during the plateau, causes only small Ca2+ elevations, lacking the upstroke phase. A second, full sized, transient could be elicited only after a complete return to the basal level. Vanadate, applied intracellularly, appeared to inhibit the re-uptake phase into the stores, stabilizing the plateau level. The present observations suggest that in mouse oocytes the InsP3-sensitive stores provide only a small and graded Ca2+ release which may then act as a trigger for a more substantial Ca(2+)-induced Ca2+ release (CICR) process.  相似文献   

19.
Kinetic Characterization of Ca2+ Transport in Synaptic Membranes   总被引:2,自引:0,他引:2  
Lysed synaptosomal membranes were prepared from brain cortices of HA/ICR Swiss mice, and the ATP-stimulated Ca2+ uptake, Ca2+-stimulated Mg2+-dependent ATPase activity, and the Ca2+-stimulated acyl phosphorylation of these membranes were studied. The Km values for free calcium concentrations ([Ca2+]f) for these processes were 0.50 microM, 0.40 microM, and 0.31 microM, respectively. Two kinetically distinct binding sites for ATP were observed for the ATP-stimulated Ca2+ uptake and the Ca2+-stimulated Mg2+-ATPase activity. The high-affinity Km values for ATP for these two processes were 16.3 microM and 28 microM, respectively. These results indicate that the processes studied operate in similar physiological concentration ranges for the substrates [Ca2+]f and ATP under identical assay conditions and, further, that these processes may be functionally coupled in the membrane.  相似文献   

20.
Endothelin (200 nM) evoked a rapid rise in [Ca2+]i which was then followed by a maintained elevation of [Ca2+]i. The initial transient can be explained by the release of stored Ca2+ whilst the maintained plateau is likely to be an influx of Ca2+ as it was partially inhibited by nifedipine (5 microM) and the remaining component abolished by the removal of extracellular Ca2+. Vasopressin (1 nM) evoked a similar response which also showed a nifedipine insensitive component to it's plateau phase. Endothelin also evoked oscillations in [Ca2+]i; these where characterised by a rapid rising phase followed by a slower decline, with no 'pacemaker' rise in [Ca2+]i preceding the rising phase. The oscillations were inhibited by the addition of 5 microM nifedipine or the removal of extracellular Ca2+ suggesting they are at least in part dependent on voltage gated Ca2+ entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号