首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and regulation of theTrypanosoma brucei mitochondrial ATP synthase is reviewed. This enzyme complex which catalyzes the synthesis and hydrolysis of ATP within the mitochondrion is a multisubunit complex which is regulated in several ways. Several lines of evidence have shown that the ATP synthase is regulated through the life cycle ofTrypanosoma brucei. The enzyme complex is present at maximal levels in the procyclic form where mitochondrial activity is the highest and cytochromes and Kreb's cycle components are present. The levels of the ATP synthase are decreased in the bloodstream forms where the levels of the mitochondrial cytochromes are absent or substantially decreased. In recent preliminary work we have shown the presence of an ATP synthase inhibitor peptide which may indicate an additional level of complexity to the regulation.  相似文献   

2.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

3.
The structure of the Ascaris suum mitochondrial NAD-malic enzyme in binary complex with NAD has been solved to a resolution of 2.3 A by X-ray crystallography. The structure resembles that of the human mitochondrial enzyme determined in complex with NAD [Xu, Y., Bhargava, G., Wu, H., Loeber, G., and Tong, L. (1999) Structure 7, 877-889]. The enzyme is a tetramer comprised of subunits possessing four domains organized in an "open" structure typical of the NAD-bound form. The subunit organization, as in the human enzyme, is a dimer of dimers. The Ascaris enzyme contains 30 additional residues at its amino terminus relative to the human enzyme. These residues significantly increase the interactions that promote tetramer formation and give rise to different subunit-subunit interactions. Unlike the mammalian enzyme, the Ascaris malic enzyme is not regulated by ATP, and no ATP binding site is observed in this structure. Although the active sites of the two enzymes are similar, residues interacting with NAD differ between the two. The structure is discussed in terms of the mechanism and particularly with respect to previously obtained kinetic and site-directed mutagenesis experiments.  相似文献   

4.
Oligomycin has long been known as an inhibitor of mitochondrial ATP synthase, putatively binding the Fo subunits 9 and 6 that contribute to proton channel function of the complex. As its name implies, OSCP is the oligomycin sensitivity-conferring protein necessary for the intact enzyme complex to display sensitivity to oligomycin. Recent advances concerning the structure and mechanism of mitochondrial ATP synthase have led to OSCP now being considered a component of the peripheral stator stalk rather than a central stalk component. How OSCP confers oligomycin sensitivity on the enzyme is unknown, but probably reflects important protein–protein interactions made within the assembled complex and transmitted down the stator stalk, thereby influencing proton channel function. We review here our studies directed toward establishing the stoichiometry, assembly, and function of OSCP in the context of knowledge of the organization of the stator stalk and the proton channel.  相似文献   

5.
Structural aspects of proton-pumping ATPases   总被引:2,自引:0,他引:2  
ATP synthase is found in bacteria, chloroplasts and mitochondria. The simplest known example of such an enzyme is that in the eubacterium Escherichia coli; it is a membrane-bound assembly of eight different polypeptides assembled with a stoichiometry of alpha 3 beta 3 gamma 1 delta 1 epsilon 1 a1b2c10-12. The first five of these constitute a globular structure, F1-ATPase, which is bound to an intrinsic membrane domain, F0, an assembly of the three remaining subunits. ATP synthases driven by photosynthesis are slightly more complex. In chloroplasts, and probably in photosynthetic bacteria, they have nine subunits, all homologues of the components of the E. coli enzyme; the additional subunit is a duplicated and diverged relation of subunit b. The mammalian mitochondrial enzyme is more complex. It contains 14 different polypeptides, of which 13 have been characterized. Two membrane components, a (or ATPase-6) and A6L, are encoded in the mitochondrial genome in overlapping genes and the remaining subunits are nuclear gene products that are translated on cytoplasmic ribosomes and then imported into the organelle. The sequence of the proteins of ATP-synthase have provided information about amino acids that are important for its function. For example, amino acids contributing to nucleotide binding sites have been identified. Also, they provide the basis of models of secondary structure of membrane components that constitute the transmembrane proton channel. An understanding of the coupling of the transmembrane potential gradient for protons, delta mu H+, to ATP synthesis will probably require the determination of the structure of the entire membrane bound complex. Crystals have been obtained of the globular domain, F1-ATPase. They diffract to a resolution of 3-4 A and data collection is in progress. As a preliminary step towards crystallization of the entire complex, we have purified it from bovine mitochondria and reconstituted it into phospholipid vesicles.  相似文献   

6.
To investigate the effect of excessive fluoride on the mitochondrial function of cardiomyocytes, 20 healthy male mice were randomly divided into 2 groups of 10, as follows: control group (animals were provided with distilled water) and fluoride group (animals were provided with 150 mg/L F? drinking water). Ultrastructure and pathological morphological changes of myocardial tissue were observed under the transmission electron and light microscopes, respectively. The content of hydrolysis ATP enzyme was observed by ATP enzyme staining. The expression levels of ATP5J and ATP5H were measured by Western blot and quantitative real-time PCR. The morphology and ultrastructure of cardiomyocytes mitochondrial were seriously damaged by fluoride, including the following: concentration of cardiomyocytes and inflammatory infiltration, vague myofilaments, and mitochondrial ridge. The damage of mitochondrial structure was accompanied by the significant decrease in the content of ATP enzyme for ATP hydrolysis in the fluoride group. ATP5J and ATP5H expressions were significantly increased in the fluoride group. Thus, fluoride induced the mitochondrial dysfunction in cardiomyocytes by damaging the structure of mitochondrial and interfering with the synthesis of ATP. The proactive ATP5J and ATP5H expression levels were a good response to the mitochondrial dysfunction in cardiomyocytes.  相似文献   

7.
Background information. The yeast mitochondrial F1Fo‐ATP synthase is a large complex of 600 kDa that uses the proton electrochemical gradient generated by the respiratory chain to catalyse ATP synthesis from ADP and Pi. For a large range of organisms, it has been shown that mitochondrial ATP synthase adopts oligomeric structures. Moreover, several studies have suggested that a link exists between ATP synthase and mitochondrial morphology. Results and discussion. In order to understand the link between ATP synthase oligomerization and mitochondrial morphology, more information is needed on the supramolecular organization of this enzyme within the inner mitochondrial membrane. We have conducted an electron microscopy study on wild‐type yeast mitochondria at different levels of organization from spheroplast to isolated ATP synthase complex. Using electron tomography, freeze‐fracture, negative staining and image processing, we show that cristae form a network of lamellae, on which ATP synthase dimers assemble in linear and regular arrays of oligomers. Conclusions. Our results shed new light on the supramolecular organization of the F1Fo‐ATP synthase and its potential role in mitochondrial morphology.  相似文献   

8.
Citrate, malate, and high levels of ATP dissociate the mitochondrial aspartate aminotransferase-glutamate dehydrogenase complex and have an inhibitory effect on the latter enzyme. These effects are opposed by Mg2+, leucine, Mg2+ plus ATP, and carbamyl phosphate synthase-I. In addition, Mg2+ directly facilitates formation of a complex between glutamate dehydrogenase and the aminotransferase and displaces the aminotransferase from the inner mitochondrial membrane which could enable it to interact with glutamate dehydrogenase in the matrix. Zn2+ also favors an aminotransferase-glutamate dehydrogenase complex. It, however, is a potent inhibitor of and has a high affinity for glutamate dehydrogenase. Leucine, however, enhances binding of Mg2+ and decreases binding of and the effect of Zn2+ on the enzyme. Thus, since both metal ions enhance enzyme-enzyme interaction and Zn2+ is a more potent inhibitor, the addition of leucine in the presence of both metal ions results in activation of glutamate dehydrogenase without disruption of the enzyme-enzyme complex. Furthermore, the combination of leucine plus Mg2+ produces slightly more activation than leucine alone. These results indicate that leucine, carbamyl phosphate synthase-I, and its substrate and cofactor, ATP and Mg2+, operate synergistically to facilitate glutamate dehydrogenase activity and interaction between this enzyme and the aminotransferase. Alternatively, Krebs cycle intermediates, such as citrate and malate, have opposing effects.  相似文献   

9.
P J Jackson  D A Harris 《FEBS letters》1988,229(1):224-228
The specific, mitochondrial ATP synthase protein (IF1) was covalently cross-linked to its binding site on the catalytic sector of the enzyme (F1-ATPase). The cross-linked complex was selectively cleaved, leaving IF1 intact to facilitate the subsequent purification of the F1 fragment to which IF1 was cross-linked. This fragment was identified by sequence analysis as comprising residues 394-459 on the F1 beta-subunit, near the C-terminus. This finding is discussed in the light of secondary structure predictions for both IF1 and the F1 beta-subunit, and sequence homologies between mitochondrial and other ATP synthases.  相似文献   

10.
The regulation of human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME) by ATP and fumarate may be crucial for the metabolism of glutamine for energy production in rapidly proliferating tissues and tumors. Here we report the crystal structure at 2.2 A resolution of m-NAD-ME in complex with ATP, Mn2+, tartronate, and fumarate. Our structural, kinetic, and mutagenesis studies reveal unexpectedly that ATP is an active-site inhibitor of the enzyme, despite the presence of an exo binding site. The structure also reveals the allosteric binding site for fumarate in the dimer interface. Mutations in this binding site abolished the activating effects of fumarate. Comparison to the structure in the absence of fumarate indicates a possible molecular mechanism for the allosteric function of this compound.  相似文献   

11.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

12.
The oxidative phosphorylation process is dependent on the assembly of both the respiratory chain that generates the electrochemical potential of the mitochondrial inner membrane and the ATP synthase complex which uses this membrane potential to drive ATP synthesis. The five respiratory enzymes involved in this process, complexes I to V, are composed of multiple subunits, some of which are synthesized on mitochondrial ribosomes, whereas others are a product of the nucleocytoplasmic genetic system. The mitochondrial genome has a limited coding capacity and the co-ordinate expression of all the subunits forming these complexes has been shown to be under nuclear control. Present knowledge of complexes I to V mainly comes from studies of bovine and fungal mitochondria. If beef heart mitochondria represent a choice material for studying the composition and structure of these complexes, Saccharomyces cerevisiae and Neurospora crassa and their numerous respiratory mutants, are ideal organisms for investigating the co-ordination of nuclear and mitochondrial genomes in their assembly. The major reason for the interest in respiratory complexes and ATP synthase from the mitochondrial inner membrane in Homo sapiens and in higher plants is the relationship between enzyme deficiencies and human diseases and ageing on one hand, and such plant phenotypic abnormalities as cytoplasmic male sterility on the other.  相似文献   

13.
The kinetics of isolated rat liver and beef heart mitochondrial adenosine triphosphatase (ATPase) were studied by using the chromium ATP and ADP complexes as substrate analogs. It was found that both chromium ATP (CrATP) and chromium ADP (CrADP) are competitive inhibitors of ATP hydrolysis. The presence or absence of ATPase-activating anions, e.g., bisulfite, had little effect on the type or potency of the inhibition by these chromium complexes. Both CrADP and CrATP were noncompetitive inhibitors of the hydrolysis of ITP with both the heart and liver-derived enzymes. It was also found that CrADP was a consistently more effective inhibitor than the ATP complex with the beef heart enzyme. These results are consistent with the existence of two types of nucleotide binding sites on mitochondrial ATPases: One site is regulatory and is rather specific for adenosine polyphosphates, while the other site is relatively nonspecific and serves as the hydrolytic site.  相似文献   

14.
Purified pea mitochondrial F1-ATPase reconstituted oxidative phosphorylation in both partially and completely F1-depleted bovine heart mitochondrial membranes. The isolated plant enzyme exhibited high rates of ATP synthesis when combined with bovine heart membranes, suggesting great evolutionary conservation of the ATP synthase complex in mitochondria.  相似文献   

15.
This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca2+ signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms. yeast; C6 glioma cells; muscle; kinetic regulation  相似文献   

16.
1. Maximum heart mitochondrial ATPase activity is displayed in the presence of an ATP/Mg++ ratio of 0.6--1.2. Under these conditions, mercury ions inhibit ATPase activity of both the mitochondria and the isolated enzyme. In both cases, inhibition occurs within concentration limits of 1--1.5X10(-4) M. 2. The inhibitory effect of free Hg++ ions can be abolished by converting them to a complex with ethylenediaminetetraacetic acid [EDTA]. 3. The inhibitory effect of Hg++ ions on mitochondrial ATPase can be attributed to their nonspecific action on functional groups of the active centre or to breakdown of the quaternary structure of the protein molecule of the enzyme.  相似文献   

17.
Steady state kinetic measurements of the rate of hydrolysis of ATP to ADP and inorganic phosphate by beef heart mitochondrial ATPase have been performed with both the solubilized enzyme and with the enzyme attached to a mitochondrial membrane fraction at 25° in 0.1 M NaCl with Mg2+ as the metal ion activator. These studies indicate the ATP Michaelis constants are somewhat larger for the soluble enzyme and the turnover numbers are considerably larger. In addition, the steady state parameters are essentially independent of pH over the range 7–9 for the membrane-bound enzyme, while the turnover number for the soluble enzyme varies considerably with pH. The product, ADP, is a competitive inhibitor of ATP and inhibits the soluble enzyme much more strongly than the membrane-bound enzyme. Oligomycin inhibits the membrane-bound enzyme very strongly, but has no effect on the activity of the soluble enzyme. The oligomycin inhibition is noncompetitive in nature.  相似文献   

18.
ABSTRACT

NADH-quinone oxidoreductase (respiratory complex I) is a key player in mitochondrial energy metabolism. The enzyme couples electron transfer from NADH to quinone with the translocation of protons across the membrane, providing a major proton-motive force that drives ATP synthesis. Recently, X-ray crystallography and cryo-electron microscopy provided further insights into the structure and functions of the enzyme. However, little is known about the mechanism of quinone reduction, which is a crucial step in the energy coupling process. A variety of complex I inhibitors targeting the quinone-binding site have been indispensable tools for mechanistic studies on the enzyme. Using biorationally designed inhibitor probes, the author has accumulated a large amount of experimental data characterizing the actions of complex I inhibitors. On the basis of comprehensive interpretations of the data, the author reviews the structural features of the binding pocket of quinone/inhibitors in bovine mitochondrial complex I.  相似文献   

19.
The interplay of inorganic phosphate (Pi) with other ligands such as Mg(2+), ADP, ATP, and Ca(2+) on the activation of 2-oxoglutarate dehydrogenase complex (2-OGDH) in both isolated enzyme complex and mitochondrial extracts was examined. Pi alone activated the enzyme, following biphasic kinetics with high (K(0.5) = 1.96+/-0.42 mM) and low (K(0.5) = 9.8+/-0.4 mM) affinity components for Pi. The activation by Pi was highly pH-dependent; it increased when the pH raised from 7.1 to 7.6, but it was negligible at pH values below 7.1. Mg-Pi and Mg-ADP, but not Mg-ATP, were more potent activators of 2-OGDH than free Pi and free ADP. ATP inhibited the 2-OGDH activity by chelating the free Mg(2+) and also as a Mg-ATP complex. With or without Mg(2+), ADP, and Pi activated the 2-OGDH by increasing the affinity for 2-OG and the V(m) of the reaction; ATP diminished the V(m), but it increased the affinity for 2-OG in the mitochondrial extract. Pi did not modify the 2-OGDH activation by Ca(2+). The results above mentioned were similar for both preparations, except for hyperbolic kinetics in the isolated enzyme and sigmoidal kinetics in the mitochondrial extracts when 2-oxoglutarate was varied. The data of this study indicated that physiological concentrations of Pi may exert a significant activation of 2-OGDH, which was potentiated by Mg(2+) and high pH, but surpassed by ADP.  相似文献   

20.
《BBA》2020,1861(1):148091
F1FO ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy. Under normal conditions, complex V was mainly restricted to cristae indicated by orthogonal trajectories along the cristae membranes. In addition confined trajectories that are quasi immobile exist. By inhibiting glycolysis with 2-DG, the activity and mobility of complex V was altered. The distinct cristae-related orthogonal trajectories of complex V were obliterated. Moreover, a mobile subpopulation of complex V was found in the inner boundary membrane. The observed changes in the ratio of dimeric/monomeric complex V, respectively less mobile/more mobile complex V and its activity changes were reversible. In IF1-KO cells, in which ATP hydrolysis is not inhibited by IF1, complex V was more mobile, while inhibition of ATP hydrolysis by BMS-199264 reduced the mobility of complex V. Taken together, these data support the existence of different subpopulations of complex V, ATP synthase and ATP hydrolase, the latter with higher mobility and probably not prevailing at the cristae edges. Obviously, complex V reacts quickly and reversibly to metabolic conditions, not only by functional, but also by spatial and structural reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号