首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are studying naturally occurring mutations in the gene for lipoprotein lipase (LPL) to advance our knowledge about the structure/function relationships for this enzyme. We and others have previously described 11 mutations in human LPL gene and until now none of these directly involves any of the residues in the proposed Asp156-His241-Ser132 catalytic triad. Here we report two separate probands who are deficient in LPL activity and have three different LPL gene haplotypes, suggesting three distinct mutations. Using polymerase chain reaction cloning and DNA sequencing we have identified that proband 1 is a compound heterozygote for a G----A transition at nucleotide 721, resulting in a substitution of asparagine for aspartic acid at residue 156, and a T----A transversion, resulting in a substitution of serine for cysteine at residues 216. Proband 2 is homozygous for an A----G base change at nucleotide 722, leading to a substitution of glycine for aspartic acid at residue 156. The presence of these mutations in the patients and available family members was confirmed by restriction analysis of polymerase chain reaction-amplified DNA. In vitro site-directed mutagenesis and subsequent expression in COS cells have confirmed that all three mutations result in catalytically defective LPL. The two naturally occurring mutations, which both alter the same aspartic acid residue in the proposed Asp156-His241-Ser132 catalytic triad of human LPL, indicate that Asp156 plays a significant role in LPL catalysis. The Cys216----Ser mutation destroys a conserved disulfide bridge that is apparently critical for maintaining LPL structure and function.  相似文献   

2.
Lipoprotein lipase (LPL) plays a central role in normal lipid metabolism as the key enzyme involved in the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins. LPL is a member of a family of hydrolytic enzymes that include hepatic lipase and pancreatic lipase. Based on primary sequence homology of LPL to pancreatic lipase, Ser-132, Asp-156, and His-241 have been proposed to be part of a domain required for normal enzymic activity. We have analyzed the role of these potential catalytic residues by site-directed mutagenesis and expression of the mutant LPL in human embryonic kidney-293 cells. Substitution of Ser-132, Asp-156, and His-241 by several different residues resulted in the expression of an enzyme that lacked both triolein and tributyrin esterase activities. Mutation of other conserved residues, including Ser-97, Ser-307, Asp-78, Asp-371, Asp-440, His-93, and His-439 resulted in the expression of active enzymes. Despite their effect on LPL activity, substitutions of Ser-132, Asp-156, and His-241 did not change either the heparin affinity or lipid binding properties of the mutant LPL. In summary, mutation of Ser-132, Asp-156, and His-241 specifically abolishes total hydrolytic activity without disrupting other important functional domains of LPL. These combined results strongly support the conclusion that Ser-132, Asp-156, and His-241 form the catalytic triad of LPL and are essential for LPL hydrolytic activity.  相似文献   

3.
We studied the molecular basis of familial Type I hyperlipoproteinemia in two brothers of Turkish descent who had normal plasma apolipoprotein C-II levels and undetectable plasma post-heparin lipoprotein lipase (LPL) activity. We cloned the cDNAs of LPL mRNA from adipose tissue biopsies obtained from these individuals by the polymerase chain reaction and directional cloning into M13 vectors. Direct sequencing of pools of greater than 2000 cDNA clones indicates that their LPL mRNA contains two mutations: a missense mutation changing codon 156 from GAU to GGU predicting an Asp156----Gly substitution and a nonsense mutation changing the codon for Ser447 from UCA to UGA, a stop codon, predicting a truncated LPL protein that contains 446 instead of 448 amino acid residues. Both patients were homozygous for both mutations. Analysis of genomic DNAs of the patients and their family members by the polymerase chain reaction, restriction enzyme digestion (the GAT----GGT mutation abolishes a TaqI restriction site), and allele-specific oligonucleotide hybridization confirms that the patients were homozygous for these mutations at the chromosomal level, and the clinically unaffected parents and sibling were true obligate heterozygotes for both mutations. In order to examine the functional significance of the mutations in this family, we expressed wild type and mutant LPLs in vitro using a eukaryotic expression vector. Five types of LPL proteins were produced in COS cells by transient transfection: (i) wild type LPL, (ii) Asp156----Gly mutant, (iii) Ser447----Ter mutant, (iv) Gly448----Ter mutant, and (v) Asp156----Gly/Ser447----Ter double mutant. Both LPL immunoreactive mass and enzyme activity were determined in the culture media and intracellularly. Immunoreactive LPLs were produced in all cases. The mutant LPLs, Asp156----Gly and Asp156----Gly/Ser447----Ter, were devoid of enzyme activity, indicating that the Asp156----Gly mutation is the underlying defect for the LPL deficiency in the two patients. The two mutant LPLs missing a single residue (Gly448) or a dipeptide (Ser447-Gly448) from its carboxyl terminus had normal enzyme activity. Thus, despite its conservation among all mammalian LPLs examined to date, the carboxyl terminus of LPL is not essential for enzyme activity. We further screened 224 unrelated normal Caucasians for the Ser447----Ter mutation and found 36 individuals who were heterozygous and one individual who was homozygous for this mutation, indicating that it is a sequence polymorphism of no functional significance. Human LPL shows high homology to hepatic triglyceride lipase and pancreatic lipase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Sequence of rat lipoprotein lipase-encoding cDNA.   总被引:7,自引:0,他引:7  
A rat lipoprotein lipase (LPL)-encoding cDNA (LPL) has been entirely sequenced and compared to the sequences of all the LPL cDNAs reported in other species. As expected, high homology was found between the coding exons. The putative catalytic triad, Ser132, Asp156, His241, according to human numbering, is conserved in rat. As is the case in mouse, an Asn444 present in human LPL is also missing. The major divergences between human, mouse and rat LPLs were observed in the untranslated exon 10, where (i) the rat cDNA exhibits a 157-bp insertion and an 81-bp deletion relative to human; (ii) neither the B1 repeat nor the homopurine stretch reported in mouse can be recognized, and (iii) the rat cDNA displays several A+T-rich stretches.  相似文献   

5.
The recently discovered extracellular poly[(R)-3-hydroxybutyrate] (PHB) depolymerase PhaZ7 of Paucimonas lemoignei represents the first member of a new subgroup (EC 3.1.1.75) of serine hydrolases with no significant amino acid similarities to conventional PHB depolymerases, lipases or other hydrolases except for a potential lipase box-like motif (Ala-His-Ser136-Met-Gly) and potential candidates for catalytic triad and oxyanion pocket amino acids. In order to identify amino acids essential for activity 11 mutants of phaZ7 were generated by site-directed mutagenesis and expressed in recombinant protease-deficient Bacillus subtilis WB800. The wild-type depolymerase and 10 of the 11 mutant proteins (except for Ser136Cys) were expressed and efficiently secreted by B. subtilis as shown by Western blots of cell-free culture fluid proteins. No PHB depolymerase activity was detected in strains harbouring one of the following substitutions: His47Ala, Ser136Ala, Asp242Ala, Asp242Asn, His306Ala, indicating the importance of these amino acids for activity. Replacement of Ser136 by Thr resulted in a decrease of activity to about 20% of the wild-type level and suggested that the hydroxy group of the serine side chain is important for activity but can be partially replaced by the hydroxy function of threonine. Alterations of Asp256 to Ala or Asn or of the putative serine hydrolase pentapeptide motif (Ala-His-Ser136-Met-Gly) to a lipase box consensus sequence (Gly134-His-Ser136-Met-Gly) or to the PHB depolymerase box consensus sequence (Gly134-Leu135-Ser136-Met-Gly) had no significant effect on PHB depolymerase activity, indicating that these amino acids or sequence motifs were not essential for activity. In conclusion, the PHB depolymerase PhaZ7 is a serine hydrolase with a catalytic triad and oxyanion pocket consisting of His47, Ser136, Asp242 and His306.  相似文献   

6.
Ser130, Asp131 and Asn132 ('SDN') are highly conserved residues in class A beta-lactamases forming one wall of the active-site cavity. All three residues of the SDN loop in Streptomyces albus G beta-lactamase were modified by site-directed mutagenesis. The mutant proteins were expressed in Streptomyces lividans, purified from culture supernatants and their kinetic parameters were determined for several substrates. Ser130 was substituted by Asn, Ala and Gly. The first modification yielded an almost totally inactive protein, whereas the smaller-side-chain mutants (A and G) retained some activity, but were less stable than the wild-type enzyme. Ser130 might thus be involved in maintaining the structure of the active-site cavity. Mutations of Asp131 into Glu and Gly proved to be highly detrimental to enzyme stability, reflecting significant structural perturbations. Mutation of Asn132 into Ala resulted in a dramatically decreased enzymic activity (more than 100-fold) especially toward cephalosporin substrates, kcat. being the most affected parameter, which would indicate a role of Asn132 in transition-state stabilization rather than in ground-state binding. Comparison of the N132A and the previously described N132S mutant enzymes underline the importance of an H-bond-forming residue at position 132 for the catalytic process.  相似文献   

7.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

8.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

9.
The objective of this study has been to investigate the effects on the structure and dynamics that take place with the breaking of the Asp-His hydrogen bond in the catalytic triad Asp175-His188-Ser120 of the serine esterase cutinase in the ground state. Four molecular dynamics simulations were performed on this enzyme in solution. The starting structures in two simulations had the Asp175-His188 hydrogen bond intact, and in two simulations the Asp175-His188 hydrogen bond was broken. Conformations of the residues comprising the catalytic triad are well behaved during both simulations containing the intact Asp175-His188 hydrogen bond. Short contacts of less than 2.6 A were observed in 1.2% of the sampled distances between the carboxylate oxygens of Asp175 and the NE2 of His188. The simulations showed that the active site residues exhibit a great deal of mobility when the Asp175-His188 hydrogen bond is broken. In the two simulations in which the Asp175-His188 hydrogen bond is not present, the final geometries for the residues in the catalytic triad are not in catalytically productive conformations. In both simulations, Asp175 and His188 are more than 6 A apart in the final structure from dynamics, and the side chains of Ser120 and Asp175 are in closer proximity to the NE2 of His188 than to ND1. Nonlocal effects on the structure of cutinase were observed. A loop formed by residues 26-31, which is on the opposite end of the protein relative to the active site, was greatly affected. Further changes in the dynamics of cutinase were determined from quasiharmonic mode analysis. The frequency of the second lowest mode was greatly reduced when the Asp175-His188 hydrogen bond was broken, and several higher modes showed lower frequencies. All four simulations showed that the oxyanion hole, composed of residues Ser42 and Gln121, is stable. Only one of the hydrogen bonds (Ser42 OG to Gln121 NE2) observed in the crystal structure that stabilize the conformation of Ser42 OG persisted throughout the simulations. This hydrogen bond appears to be enough for the oxyanion hole to retain its structural integrity.  相似文献   

10.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

11.
Escherichia coli outer membrane phospholipase A (OMPLA) is an integral membrane enzyme. OMPLA is active as a homodimer and requires calcium as a cofactor. The crystal structures of the monomeric and the inhibited dimeric enzymes were recently determined [Snijder, H. J., et al. (1999) Nature 401, 717-721] and revealed that OMPLA monomers are folded into a 12-stranded antiparallel beta-barrel. The active site consists of previously identified essential residues Ser144 and His142 in an arrangement resembling the corresponding residues of a serine hydrolase catalytic triad. However, instead of an Asp or Glu that normally is present in the triad of serine hydrolases, a neutral asparagine (Asn156) was found in OMPLA. In this paper, the importance of the catalytic Asn156 is addressed by site-directed mutagenesis studies. All variants were purified at a 30 mg scale, and were shown to be properly folded using SDS-PAGE and circular dichroism spectroscopy. Using chemical cross-linking, it was shown that all variants were not affected in their calcium-dependent dimerization properties. The Asn156Asp variant exhibited a 2-fold lower activity than wild-type OMPLA at neutral pH. Interestingly, the activity of the variant is 1 order of magnitude higher than that of the wild type at pH >10. Modest residual activities (5 and 2.5%, respectively) were obtained for the Asn156Ala and Asn156Gln mutants, showing that the active site of OMPLA is more tolerant toward replacements of this third residue of the catalytic triad than other serine hydrolases, and that the serine and histidine residues are minimally required for catalysis. In the X-ray structure of dimeric OMPLA, the cofactor calcium is coordinating the putative oxyanion via two water molecules. We propose that this may lessen the importance for the asparagine in the catalytic triad of OMPLA.  相似文献   

12.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

13.
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications.  相似文献   

14.
The lipA gene encoding the extracellular lipase produced by Pseudomonas glumae PG1 was cloned and characterized. A sequence analysis revealed an open reading frame of 358 codons encoding the mature lipase (319 amino acids) preceded by a rather long signal sequence of 39 amino acids. As a first step in structure-function analysis, we determined the Ser-Asp-His triad which makes up the catalytic site of this lipase. On the basis of primary sequence homology with other known Pseudomonas lipases, a number of putative active site residues located in conserved areas were found. To determine the residues actually involved in catalysis, we constructed a number of substitution mutants for conserved Ser, Asp, and His residues. These mutant lipases were produced by using P. glumae PG3, from which the wild-type lipase gene was deleted by gene replacement. By following this approach, we showed that Ser-87, Asp-241, and His-285 make up the catalytic triad of the P. glumae lipase. This knowledge, together with information on the catalytic mechanism and on the three-dimensional structure, should facilitate the selection of specific modifications for tailoring this lipase for specific industrial applications.  相似文献   

15.
Outer membrane phospholipase A (OMPLA) from Escherichia coli is an integral-membrane enzyme with a unique His-Ser-Asn catalytic triad. In serine proteases and serine esterases usually an Asp occurs in the catalytic triad; its role has been the subject of much debate. Here the role of the uncharged asparagine in the active site of OMPLA is investigated by structural characterization of the Asn156Ala mutant. Asparagine 156 is not involved in maintaining the overall active-site configuration and does not contribute significantly to the thermal stability of OMPLA. The active-site histidine retains an active conformation in the mutant notwithstanding the loss of the hydrogen bond to the asparagine side chain. Instead, stabilization of the correct tautomeric form of the histidine can account for the observed decrease in activity of the Asn156Ala mutant.  相似文献   

16.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

17.
The active site of thermolysin is composed of one zinc ion and five polypeptide regions [N-terminal sheet (Asn112-Trp115), alpha-helix 1 (Val139-Thr149), C-terminal loop 1 (Asp150-Gly162), alpha-helix 2 (Ala163-Val176) and C-terminal loop 2 (Gln225-Ser234)]. To explore their catalytic roles, we introduced single amino-acid substitutions into these regions by site-directed mutagenesis and examined their effects on the activity and stability. Seventy variants, in which one of the twelve residues (Ala113, Phe114, Trp115, Asp150, Tyr157, Gly162, Ile168, Ser169, Asp170, Asn227, Val230 and Ser234) was replaced, were produced in Escherichia coli. The hydrolytic activities of thermolysin for N-[3-(2-furyl)acryloyl]-Gly-l-Leu amide (FAGLA) and casein revealed that the N-terminal sheet and alpha-helix 2 were critical in catalysis and the C-terminal loops 1 and 2 were in substrate recognition. Twelve variants were active for both substrates. In the hydrolysis of FAGLA and N-carbobenzoxy-L-Asp-L-Phe methyl ester, the k(cat)/K(m) values of the D150E (in which Asp150 is replaced with Glu) and I168A variants were 2-3 times higher than those of the wild-type (WT) enzyme. Thermal inactivation of thermolysin at 80 degrees C was greatly suppressed with the D150H, D150W, I168A, I168H, N227A, N227H and S234A. The evidence might provide the insights into the activation and stabilization of thermolysin.  相似文献   

18.
Human chymase is a protease involved in physiological processes ranging from inflammation to hypertension. As are all proteases of the trypsin fold, chymase is synthesized as an inactive "zymogen" with an N-terminal pro region that prevents the transition of the zymogen to an activated conformation. The 1.8 A structure of pro-chymase, reported here, is the first zymogen with a dipeptide pro region (glycine-glutamate) to be characterized at atomic resolution. Three segments of the pro-chymase structure differ from that of the activated enzyme: the N-terminus (Gly14-Gly19), the autolysis loop (Gly142-Thr154), and the 180s loop (Pro185A-Asp194). The four N-terminal residues (Gly14-Glu15-Ile16-Ile17) are disordered. The autolysis loop occupies a position up to 10 A closer to the active site than is seen in the activated enzyme, thereby forming a hydrogen bond with the catalytic residue Ser195 and occluding the S1' binding pocket. Nevertheless, the catalytic triad (Asp102-His57-Ser195) is arrayed in a geometry close to that seen in activated chymase (all atom rmsd of 0.52 A). The 180s loop of pro-chymase is, on average, 4 A removed from its conformation in the activated enzyme. This conformation disconnects the oxyanion hole (the amides of Gly193 and Ser195) from the active site and positions only approximately 35% of the S1-S3 binding pockets in the active conformation. The backbone of residue Asp194 is rotated 180 degrees when compared to its conformation in the activated enzyme, allowing a hydrogen bond between the main-chain amide of residue Trp141 and the carboxylate of Asp194. The side chains of residues Phe191 and Lys192 of pro-chymase fill the Ile16 binding pocket and the base of the S1 binding pocket, respectively. The zymogen positioning of both the 180s and autolysis loops are synergistic structural elements that appear to prevent premature proteolysis by chymase and, quite possibly, by other dipeptide zymogens.  相似文献   

19.
Three single-residue mutations, Asp71-->Asn, Gln409-->Pro and Gly447-->Ser, two long-to-short loop replacement mutations, Gly23-Ala24-Asp25-Gly26-Ala27-Trp28- Val29-Ser30-->Asn-Pro-Pro (23-30 replacement) and Asp297-Ser298-Glu299-Ala300-Val301-->Ala-G ly-Ala (297-301 replacement) and one deletion mutation removing Glu439, Thr440 and Ser441 (Delta439-441), all based on amino acid sequence alignments, were made to improve Aspergillus awamori glucoamylase thermostability. The first and second single-residue mutations were designed to introduce a potential N:-glycosylation site and to restrict backbone bond rotation, respectively, and therefore to decrease entropy during protein unfolding. The third single-residue mutation was made to decrease flexibility and increase O:-glycosylation in the already highly O:-glycosylated belt region that extends around the globular catalytic domain. The 23-30 replacement mutation was designed to eliminate a very thermolabile extended loop on the catalytic domain surface and to bring the remainder of this region closer to the rest of the catalytic domain, therefore preventing it from unfolding. The 297-301 replacement mutant GA was made to understand the function of the random coil region between alpha-helices 9 and 10. Delta439-441 was constructed to decrease belt flexibility. All six mutations increased glucoamylase thermostability without significantly changing enzyme kinetic properties, with the 23-30 replacement mutation increasing the activation free energy for thermoinactivation by about 4 kJ/mol, which leads to a 4 degrees C increase in operating temperature at constant thermostability.  相似文献   

20.
The CuA center is a dinuclear Cu2S2(Cys) electron transfer center found in cytochrome c oxidase and nitrous oxide reductase. In a previous investigation of the equatorial histidine ligands' effect on the reduction potential, electron transfer and spectroscopic properties of the CuA center, His120 in the engineered CuA azurin was mutated to Asn, Asp, and Ala. The identical absorption and EPR spectra of these mutants indicate that a common ligand is bound to the copper center. To identify this replacement ligand, the His120Gly CuA azurin mutant was constructed and purified. Absorption and X-band EPR spectra show that His120Gly is similar to the other His120X (X = Asn, Asp, Ala) mutant proteins. Titrations with chloride, imidazole, and azide suggest that the replacement ligand is not exchangeable with exogenous ligands. The possibility of an internal amino acid acting as the replacement ligand for His120 in the His120X mutant proteins was investigated by analyzing the CuA azurin crystal structure and then converting the likely internal ligand, Asn 119, to Asp, Ser, or Ala in the His120Gly mutant. The double mutants H120G/Asn 119X (X = Asp, Ser, or Ala) displayed UV-Vis absorption and EPR spectra that are identical to His120Gly and the other His120X mutants, indicating that Asn119 is not the internal ligand replacing His120 in the His120X mutant proteins. These results demonstrate the remarkable stability of the dinuclear His120 mutants of CuA azurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号