首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intial phases of auxin-induced growth in coleoptile segments of Avena sativa L. were investigated using a high resolution growth recording technique, based on an angular position sensing transducer. The first response to the hormone is a slight, transient reduction of the growth rate lasting about 5 min. After this phase growth rate increases to a maximum. The duration of the increase and the maximum clearly depend on the concentration of the hormone. With increasing auxin concentration the duration of the growth rate increase is reduced from about 80 min in 10-9 M indoleacetic acid (IAA) to about 14 min in 10-4 M IAA. After the maximum the growth rate declines. Looking at the maximum of the growth rate, we obtained a dose-response curve with a sharp increase between 10-9 M and 10-6 M IAA and a slight decline between 10-6 M and 10-4 M IAA. This result is confirmed by growth rates measured one and two hours after the application of the hormone.Abbreviations IAA indoleacetic acid  相似文献   

2.
Diurnal changes in photosynthetic parameters and enzyme activities were characterized in greenhouse grown maize plants (Zea mays L. cv Pioneer 3184). Rates of net photosynthesis and assimilate export were highest at midday, coincident with maximum irradiance. During the day, assimilate export accounted for about 80% of net carbon fixation, and the maximum export rate (35 milligrams CH2O per square decimeter per hour) was substantially higher than the relatively constant rate maintained through the night (5 milligrams CH2O per square decimeter per hour). Activities of sucrose phosphate synthase and NADP-malate dehydrogenase showed pronounced diurnal fluctuations; maximum enzyme activities were generally coincident with highest light intensity. Reciprocal light/dark transfers of plants throughout the diurnal cycle revealed that both enzymes were deactivated by 30 minutes of darkness during the day, and they could both be substantially activated by 30 minutes of illumination at night. During 24 hours of extended darkness, sucrose phosphate synthase activity declined progressively to an almost undetectable level, but was activated after 1.5 hours of illumination. Thus, the diurnal fluctuation in maize sucrose phosphate synthase can be explained by some form of light modulation of enzyme activity and is not due to an endogenous rhythm in activity. No diurnal fluctuations were observed in the activities of NADP-malic enzyme or fructose 6-phosphate-2-kinase. Phosphoenolpyruvate carboxylase was activated by light to some extent (about 50%) when activity was measured under suboptimal conditions in vitro. The results suggested that the rates of sucrose formation and assimilate export were closely aligned with the rate of carbon fixation and the activation state of sucrose phosphate synthase.  相似文献   

3.
Transitions in carbohydrate metabolism and translocation rate were studied for evidence of control of export by the sugar beet (Beta vulgaris L. Klein E.) source leaf. Steady-state labeling was carried out for two consecutive 14-hour light periods and various quantities related to translocation were measured throughout two 24-hour periods. Starch accumulation following illumination was delayed. Near the end of the light period, starch stopped accumulating, whereas photosynthesis rate and sucrose level remained unchanged. At the beginning of the dark period there was a 75-minute delay before starch was mobilized. The rate of import to the developing sink leaves at night was similar to that during the day, whereas export decreased considerably at night.

Starch accumulation and degradation seemed to be initiated in response to the level of illumination. Cessation of starch accumulation before the end of the light period was initiated endogenously. Exogenous control appeared to be mediated by the level of sucrose in the source leaf while endogenous control seemed to be keyed to photoperiod or photosynthetic duration.

  相似文献   

4.
(1) Very brief periods of illumination do not initiate photophosphorylation in isolated chloroplast lamellae. The time of illumination required before any phosphorylation can be detected is inversely proportional to the light intensity. At very high intensities, phosphorylation is initiated after illumination for about 4 ms.(2) There is no similar delay in the initiation of electron transport. The rate of electron transport is very high at first but declines at about the time the capacity for ATP synthesis develops. When the chloroplasts are uncoupled with gramicidin the high initial rate persists.(3) Various ions which permeate the thylakoid membrane (K+ or Rb+ in the presence of valinomycin, SCN?, I?, or ClO4?) markedly increase the time of illumination required to initiate phosphorylation. Potassium ions in the presence of valinomycin increase the delay to a maximum of about 50 ms whereas thiocyanate ions increase the delay to a maximum of about 25 ms. The effects of K+ with valinomycin and the effect of SCN? are not additive. Permeant ions and combinations of permeant ions have little or no effect on phosphorylation during continuous illumination.(4) The reason for the threshold in the light requirement and the reason for the effect of permeant ions thereon are both obscure. However, it could be argued that the energy for phosphorylation initially resides in an electric potential gradient which is abolished by migration of ions in the field, leaving a more slowly developing proton concentration gradient as the main driving force for phosphorylation during continuous illumination. If so, the threshold in the presence of permeant ions should depend on internal hydrogen ion buffering.  相似文献   

5.
Vassey TL 《Plant physiology》1988,88(3):540-542
The extractable activity of sucrose phosphate synthase was determined in etiolated seedlings of maize (Zea mays L.), soybean (Glycine max [L.] Merr.), and sugar beet (Beta vulgaris L.) following treatments of changing light quality. A 30-minute illumination of 30 microeinsteins per square meter per second white light produced a three-fold increase in sucrose phosphate synthase activity at 2 hours postillumination when compared to seedlings maintained in total darkness. Etiolated maize seedlings treated with 3.6 microeinsteins per square meter per second of red and far-red light showed a 50% increase and a 50% decrease in sucrose phosphate synthase activity, respectively, when compared to etiolated maize seedlings treated with white light. Maize seedlings exposed for 30 minutes to red followed by 30 minutes to far-red showed an initial increase in sucrose phosphate synthase activity followed by a rapid decrease to control level. Neither soybean or sugar beet sucrose phosphate synthase responded to the 30-minute illumination of white light. Phytochrome is involved in sucrose phosphate synthase regulation in maize, whereas it is not responsible for changes in sucrose phosphate synthase activity in soybean or sugar beet.  相似文献   

6.
Light production by green plants   总被引:38,自引:5,他引:33       下载免费PDF全文
1. Green plants have been found to emit light of approximately the same color as their fluorescent light for several minutes following illumination. This light is about 10–3 the intensity of the fluorescent light, about one-tenth second after illumination below saturation or 10–6 of the intensity of the absorbed light. 2. The decay curve follows bimolecular kinetics at 6.5°C. and reaction order 1.6 at 28°C. 3. This light saturates as does photosynthesis at higher light intensities and in about the same intensity range as does photosynthesis. 4. An action spectrum for light emitted as a function of the wave length of exciting light has been determined. It parallels closely the photosynthetic action spectrum. 5. The intensity of light emission was studied as a function of temperature and found to be optimal at about 37°C. with an activation energy of approximately 19,500 calories. Two-temperature studies indicated that the energy may be trapped in the cold, but that temperatures characteristic for enzymatic reactions are necessary for light production. 6. Illumination after varying dark periods showed initial peaks of varying height depending on the preceding dark period. 7. 5 per cent CO2 reversibly depresses the amount of light emitted by about 30 per cent. About 3 minutes are required for this effect to reach completion at room temperatures. 8. Various inhibitors of photosynthesis were tested for their effect on luminescence and were all inhibitory at appropriate concentrations. 9. Irradiation with ultraviolet light (2537A) inhibits light production at about the same rate as it inhibits photosynthesis. 10. This evidence suggests that early and perhaps later chemical reactions in photosynthesis may be partially reversible.  相似文献   

7.
Carbon partitioning and export from mature cotton leaves   总被引:4,自引:0,他引:4       下载免费PDF全文
The partitioning of carbon in intact, mature cotton (Gossypium hirsutum L.) leaves was examined by steady-state 14CO2 labeling. Plants were exposed to dark periods of varying lengths, followed by similar illuminated labeling periods. These treatments produced leaves with a range of starch and soluble sugar contents, carbon exchange, and carbon export rates. Export during the illuminated periods was neither highly correlated with photosynthesis nor was export during the illuminated periods significantly different among the treatments. In contrast, the rate of subsequent nocturnal carbon export from these leaves varied widely and was found to be highly correlated with leaf starch content at the end of the illumination period (r = 0.934) and with nocturnal leaf respiration (r = 0.954). Leaves which had accumulated the highest levels of starch (about 275 micrograms per square centimeter) by the end of the illumination period exhibited nocturnal export rates very similar to those during the daylight hours. Leaves which accumulated starch to only 50 to 75 micrograms per square centimeter virtually ceased nocturnal carbon export. For leaves with starch accumulations of between 50 and 275 micrograms per square centimeter, nocturnal export was directly proportional to leaf starch at the end of the illumination period. After the nocturnal export rate was established, it continued at a constant rate throughout the night even though leaf starch and sucrose contents declined.  相似文献   

8.
Intracellular pools of ATP, GTP, and ppGpp have been measured in Escherichia coli after an energy source shift-down from glucose minimal to succinate-minimal medium. In a Tic+ strain (ATCC 10798), which reduces translational initiation after the down-shift, the rate of protein labeling falls to about 30% of its preshift rate within the first minute after shift and reaches a minimum of 17% by 6 min after shift. The ATP pool in this strain remains constant for about 10 min after shift, then declines gradually to about 60% of its initial level. The temporal discrepancy between protein synthesis and the decline in the ATP pool indicates that a decrease in intracellular ATP is not necessary for the control of protein synthesis. In a Tic? strain (W1), which cannot control translational initiation under these conditions, the decline in the ATP pool is somewhat more rapid and more pronounced (to 40%) than in the Tic+ strain, indicating that the decline in the ATP pool is not sufficient to trigger control of translational initiation. The intracellular GTP pool in the Tic+ strain remains constant for 2 min after shift, then declines gradually to reach a minimum of 45% of its initial level at 20 min after shift. The pattern is in general similar in the the Tic? strain, although the ultimate decline in GTP is more pronounced (to 29%). These data indicate that the decline in GTP is not sufficient and probably unnecessary to elicit control of translational initiation. Intracellular levels of ppGpp increase with very similar kinetics in relA+Tic+ (ATCC 10798) and relA+Tic? (W1) strains, indicating that elevated ppGpp levels are not sufficient to elicit control of translation. In a relA?Tic+ strain (NF162), or in a relA+Tic+ strain treated with rifampin, the ppGpp pool does not increase significantly after shift-down although translational initiation is reduced. Thus, an increase in the ppGpp pool is not necessary to control of translational initiation.  相似文献   

9.
10.
Movement ofMimosa pudica L. pulvinules was investigated by using excised ones which were placed on a moist filter paper. The pulvinules excised in the morning opened at the addition of IAA (10−7 M to 10−4M) in the dark. The lag period for the onset of the opening was about 15 min. Na-acetate buffer (pH 4) also induced the opening of pulvinules in the dark, and the buffer-induced opening was inhibited by the uncouplers of oxidative phosphorylation. Na-MES and Na-citrate buffers (pH 4) did not induce the opening. Pulvinules taken from closed leaves in the evening were less responsive to IAA than those taken from open leaves in the morning. The pulvinules taken in the evening slightly opened with incandescent light (4000 lux), but those preincubated with IAA (10−7M and 10−6M) opened distinctly upon the illumination.  相似文献   

11.
Translocation of C Sucrose in Sugar Beet during Darkness   总被引:1,自引:1,他引:0       下载免费PDF全文
Geiger DR  Batey JW 《Plant physiology》1967,42(12):1743-1749
The time-course of arrival of 14C translocate in a sink leaf was studied in sugar beet (Beta vulgaris L. cultivar Klein Wanzleben) for up to 480 minutes of darkness. Following darkening of the source leaf, translocation rapidly declined, reaching a rate approximately 25% of the light period rate by 150 minutes. Comparison of data from plants that were girdled 1 cm below the crown with data from ungirdled plants indicates that after about 150 minutes darkness the beet root becomes a source of translocate to the sink leaf. After about 90 minutes darkness, starch-like reserve polysaccharide from the source leaf begins to contribute 14C to ethanol soluble pools in that leaf. Because of a 15% isotope mass effect, sucrose, at isotopic saturation, reaches a specific activity which is about 85% of the level of the supplied CO2. The source leaf sucrose specific activity remains at the isotopic saturation level for about 150 minutes of darkness, after which time input from polysaccharide reserves causes the specific activity to drop to about 55% of that of the supplied CO2. Sucrose specific activity determinations, polysaccharide dissolution measurements, and pulse labeling experiments indicate that following partial depletion of the sucrose pool, source leaf polysaccharide contributes to dark translocation. Respired CO2 from the source leaf appears to be derived from a pool which, unlike sucrose, remains at a uniform specific activity.  相似文献   

12.
A. Hager  R. Schmidt 《Planta》1968,83(4):347-371
Summary Short illumination of excised coleoptiles (with or without apex) inhibits the subsequent transport of IAA-2-14C in these sections during darkness.To a certain extent the inhibition is dependent both on the light intensity and on the duration of illumination. Only the blue region of the visible spectrum is effective.The light induced inhibition is due to a decrease of the quantity of IAA transported; on the other hand, the velocity of transport remains unchanged.The inhibition of auxin transport can be observed only if coleoptiles contain endogenous or fed auxin during the preceding illumination period. Besides illumination inhibition of auxin transport can also be brought about by incubation of coleoptile sections with a previously illuminated IAA/FMN solution.Auxin transformed by peroxidase operates in the same way. The different oxidation products of IAA in the solutions used were identified: The only product which inhibits elongation growth and auxin transport was 3-M. The conversion of IAA to 3-M is accomplished by crude cell-free extracts from corn coleoptiles.An increased formation of labeled 3-M from IAA-2-14C during illumination of coleoptiles could be demonstrated.Since 3-M is not actively transported in coleoptiles, it must be assumed that 3-M functions as an inhibitor of auxin transport only at its site of formation.It is concluded that the phototropic curvature of coleoptiles and stems is triggered by the photooxidative formation of 3-M from IAA in the side exposed to light. The flow of growth substances will be partly blocked by 3-M in this side and can be directed to the shaded side.On the strength of these findings some phenomena of phototropism (transmission of stimulus, mneme, quantum yield) can easily be explained.
Abkürzungen FMN Flayinmononucleotid - IES Indol-3-essigsäure - 3-M 3-Methylenoxindol - NES -Naphthylessigsäure Herrn Prof. Dr. L. Brauner zum 70. Geburtstag in Dankbarkeit gewidmet.  相似文献   

13.
Nishimura T  Mori Y  Furukawa T  Kadota A  Koshiba T 《Planta》2006,224(6):1427-1435
When maize coleoptiles were unilaterally exposed to red light (7.9 μmol m−2s−1 for 5 min), 3 h after treatment IAA levels in coleoptiles decreased in all regions, from top to basal, with levels about 60% of dark controls. Localized irradiation in the 5 mm top zone was sufficient to cause the same extent of IAA reduction in the tips to that in the tips of whole irradiated shoots. When coleoptiles were treated with N-1-naphthylphthalamic acid (NPA), an accumulation of IAA in the tip and a decrease of diffusible IAA from tips were simultaneously detected. IAA accumulation in red-light treated coleoptiles by NPA was much lower than that of dark controls. NPA treatment did not affect the content of conjugated IAA in either dark or light treated coleoptile tips. When 13C11 15N2-tryptophan (Trp) was applied to the top of coleoptiles, substantial amounts of stable isotope were incorporated into free IAA in dark and red-light treated coleoptile tips. The ratio of incorporation was slightly lower in red-light treated coleoptile tips than that in dark controls. The label could not be detected in conjugated IAA. The rate of basipetal transport of IAA was about 10 mm h−1 and the velocity was not affected by red light. These results strongly suggest that red light does not affect the rates of conversion of free IAA to the conjugate form or of the basipetal transport, but just reduces the IAA level in the tips, probably inhibited by IAA biosynthesis from Trp in this region.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

14.
Summary Light promotes the net acropetal movement of 14C through 6-mm subapical segments of dark-grown roots of Zea mays supplied at their basal ends with 1 M IAA-1-14C in agar blocks. This promotion occurs only when the segments are irradiated during the transport period, and both red and blue light appear to be as effective as white light at the radiant flux densities used in this investigation. The promotion is not found if the segments are pretreated with light and then returned to darkness before the trasport of IAA-1-14C is determined. The very slight basipetal movement of 14C through the segments supplied with an apical source of IAA-1-14C is unaffected by light.Only one radioactive substance is found in the apical receiver blocks. This substance has an Rf virtually identical to those of the stock solution of IAA incorporated into the donor block and of unlabelled IAA. The movement of radioactivity into the receiver blocks through, the illuminated segments therefore appears to reflect the movement of IAA. Light thus increases the acropetal movement of IAA through the Zea root segment.The primary roots of Zea mays var. Giant Horse Tooth seedlings grown in total darkness do not exhibit a positive geotropic response. When the seed is orientated with the embryo uppermost the radicle grows out horizontally. On exposure to light, however, the roots bend down. This reaction appears about 3–9 hours after the onset of illumination, and white, red and blue light appear to be equally effective at the flux densities employed in this study. Green light in the spectral band between 510–530 nm did not appear to induce this positive geotropic responsiveness.  相似文献   

15.
Guard cell protoplasts from Commelina communis L. illuminated with red light responded to a blue light pulse by an H+ extrusion which lasted for about 10 minutes. This proton extrusion was accompanied by an O2 uptake with a 4H+ to O2 ratio. The response to blue light was nil in darkness without a preillumination period of red light and increased with the duration of the red light illumination until about 40 minutes. However, acidification in response to a pulse of blue light was obtained in darkness when external NADH (1 millimolar) was added to the incubation medium, suggesting that redox equivalents necessary for the expression of the response to blue light in darkness may be supplied via red light. In accordance with this hypothesis, the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (10 micromolar) decreased the acidification in response to blue light more efficiently when it was added before red light illumination than before the blue light pulse. In the presence of hexacyanoferrate, the acidification in response to a blue light pulse was partly inhibited (53% of control), suggesting a competition for reducing power between ferricyanide reduction and the response to blue light.  相似文献   

16.
We determined the number of mitochondria, microbodies, and plastids in dark-grown oat (Avena sativa) coleoptiles following incubation in indoleacetic acid (IAA) for a period of 60 minutes at 6-minute intervals. In the apical outer epidermis of coleoptiles, the mitochondria increased from 31.4 to 35 per cell section with a 6-minute incubation in IAA, and this trend persisted over the 60-minute incubation. Neither the microbodies, plastids, nor the dicytosomes (Gawlik and Miller 1974 Plant Physiol 54:217-221) responded to the hormone. The apical parenchyma showed no change in quantity of any of the organelles including the dictyosomes during IAA incubation. The quick response of mitochondria in the coleoptile tip could be interpreted as an association of this organelle with hormone transport, growth, or perhaps with gravity perception. In the subapical expansion region, IAA caused significant reductions of mitochondria, microbodies, and dictyosomes in the outer epidermis compared to the control, the timing of which preceded the IAA-induced elongation and of geotropism. The fast response of organelles in the various cells is probably a change in organelle volume rather than number. That microbodies show a response to the plant hormone in the permanently achlorophyllous epidermis indicates that these organelles, in addition to their peroxisomal functions in green leaves, also may have a growth regulation function. IAA treatment was without effect on the quantity of the various types of plastids (including the amyloplasts) in the different oat coleoptile cells.  相似文献   

17.
Leaves of dark-grown corn (Zea mays) were illuminated for periods ranging from 3 minutes to 12 hours. The changes in the activities of ribose-5-phosphate isomerase, ribulose-5-phosphate kinase, and ribulose-1,5-diphosphate carboxylase were followed.

The activity of ribose-5-phosphate isomerase did not change significantly until between 12 and 24 hours of illumination. An increase in ribulose-5-phosphate kinase activity occurred after a lag of about 6 hours. The increase in carboxylase activity began after 3 minutes of illumination and increased until after 3 to 6 hours in the light, after which it began to decline. The increases in these enzymes appear to be the result of protein synthesis.

  相似文献   

18.
Aerated and stirred 10-ml suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used for simultaneous measurements of net H+ efflux and steady-state ATP levels.

Initial rates of medium acidification indicated values for H+ efflux in the light and dark of 0.66 and 0.77 nanomoles H+/106 cells per minute, respectively. When the medium pH was maintained at 6.5, with a pH-stat apparatus, rates of H+ efflux remained constant. Darkness or DCMU, however, stimulated H+ efflux by 100% or more. Darkness increased ATP levels by 33% and a switch from dark to light reduced ATP levels by 31%. In the absence of aeration, illumination prevented the accumulation of respiratory CO2 and the buffering capacity of the medium was about 50% less than that found in the nonilluminated nonaerated medium. As a result, rates of pH decline were similar even though the dark rate of H+ efflux was approximately 50% greater.

Proposals that photosynthesis stimulates H+ efflux are based on changes in the rate of pH decline. The present data indicate that photosynthesis inhibits H+ efflux and that changes in rates of pH decline should not be equated with changes in the rate of H+ efflux.

  相似文献   

19.
The role of tip-localised H+ secretion in regulating chloronemal tip growth in the moss Funaria hygrometrica Hedw. was investigated. pH was monitored with pH microelectrodes placed close to the cell surface while the rate of extension growth was manipulated by illumination and by the application of indole-3-acetic acid. Growth stimulations were accompanied by acidification of the external solution; this acidification was most pronounced at the growing tip. The timing and extent of acification external to the tip correlated well with the magnitude and time course of growth stimulations. The maintenance of both growth and H+ efflux under CO2-free conditions indicated that neither photosynthetic nor respiratory CO2 metabolism were involved. Artificially acidifying the nutrient solution rapidly but transiently stimulated elongation in both white light and darkness. Furthermore, the stimulation of elongation caused by white light was inhibited if the nutrient solution was buffered strongly near neutrality. We conclude that the acid growth hypothesis is applicable to tip growth in Funaria and that light and exogenous indole-3-acetic acid act at least in part by stimulating localised H+-ion efflux.Abbreviations D darkness - IAA indole-3-acetic acid - WL white light  相似文献   

20.
Nobel PS 《Plant physiology》1968,43(5):781-787
A light-induced shrinkage of chloroplasts in vivo could be detected with chloroplasts isolated within 2 minutes of harvesting pea plants. As determined both by packed volume and Coulter counter, the mean volume of chloroplasts from plants in the dark was 39 μ3, whereas it was 31 μ3 for chloroplasts from plants in the light. Upon illumination of the plants, the half-time for the chloroplast shrinkage in vivo was about 3 minutes, and the half-time for the reversal in the dark was about 5 minutes. A plant growth temperature of 20° was optimal for the volume change. The chloroplast shrinkage was half-maximal for a light intensity of 400 lux incident on the plants and was light-saturated near 2000 lux. The light-absorbing pigment responsible for the volume change was chlorophyll. This light-induced shrinkage resulted in a flattening and slight indenting of the chloroplasts. This chloroplast flattening upon illumination of the plants may accompany an increase in the photosynthetic efficiency of chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号