首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary A study was made of the ultrastructure of the paracervical (Frankenhäuser) ganglion of the newborn rat, using immersion fixation by glutaraldehyde (2.5%) followed by OsO4 (1%), or KMnO4 (3%) fixation. The cells containing dense—core vesicles were divided into three groups: (1) primitive sympathetic cells, (2) cells containing some dense-core vesicles 700–1100 Å in size and structurally resembling sympathetic neurons, called principal neurons, and (3) cells containing many dense-core vesicles with a larger, darker dense core, 800–2000 Å in diameter, called granule-containing cells. Using glutaraldehyde-osmium fixation, the principal neurons were further divided into dark and light cells on the basis of electron opacity of the cytoplasmic matrix. The granule-containing cells were believed to correspond to the small, intensely fluorescent cells (SIF-cells) previously described using the formaldehyde-induced fluorescence technique. On the basis of the amount of granules, the granulecontaining cells were classified as mature or maturing SIF-cells and as more primitive SIF-cells, and developing sympathicoblasts. The development of synapses in autonomic ganglia was discussed.Grant: The Finnish Medical Foundation.  相似文献   

5.
The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using 15N2-guanido-arginine and measuring urinary 15NO3 and [15N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.  相似文献   

6.
Oxidative stress and apoptosis in retinal pigment epithelium cells are involved in the pathogenesis of diabetic retinopathy (DR). Forkhead box class O 6 (FOXO6) is a member of the FOXO family that can regulate diabetes-induced oxidative stress. However, the role of FOXO6 in DR has not been clarified. The aim of the present study was to investigate the effects of FOXO6 on high glucose (HG)-induced oxidative stress and apoptosis in ARPE-19 cells. The results showed that FOXO6 was overexpressed in clinical vitreous samples from DR patients and in HG-induced ARPE-19 cells. Knockdown of FOXO6 by small interfeing RNA targeting FOXO6 (si-FOXO6) mitigated the HG-induced the production of reactive oxygen species and malondialdehyde, as well as the inhibition of superoxide dismutase activity. Knockdown of FOXO6 reduced the rate of cell apoptosis in HG-induced ARPE-19 cells. The increase in bax expression and decrease in bcl-2 expression caused by HG stimulation were reversed by si-FOXO6 transfection. Furthermore, knockdown of FOXO6 enhanced the activation of Akt/Nrf2 pathway in HG-stimulated ARPE-19 cells. Taken together, suppression of FOXO6 protects ARPE-19 cells from HG-induced oxidative stress and apoptosis, which is in part mediated by the activation of Akt/Nrf2 pathway.  相似文献   

7.
8.
Glaucoma is one of the leading eye diseases resulting in blindness due to the death of retinal ganglion cells. This study aimed to develop novel protocol to promote the differentiation of retinal Müller cells into ganglion cells in vivo in a rat model of glaucoma. The stem cells dedifferentiated from rat retinal Müller cells were randomized to receive transfection with empty lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP, or no transfection. The stem cells were induced further to differentiate. Ocular hypertension was induced using laser photocoagulation. The eyes were injected with Atoh7 expression vector lentivirus PGC-FU-Atoh7-GFP. Eyeball frozen sections, immunohistochemistry, RT-PCR, Western bolt, and apoptosis assay were performed. We found that the proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of the other two groups. The mean intraocular pressure of glaucomatous eyes was elevated significantly compared with those of contralateral eyes. Some retinal Müller cells in the inner nuclear layer entered the mitotic cell cycle in rat chronic ocular hypertension glaucoma model. Atoh7 contributes to the differentiation of retinal Müller cells into retinal ganglion cells in rat model of glaucoma. In conclusion, Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma.  相似文献   

9.
10.
The relationship between the type of retinal ganglion cell (RGC) and the retinoreceptive layer of the tectum is investigated by the immunostaining of RGCs with nicotinic acetylcholine receptorβ2 (nAChRβ2) antibody and intracellular staining by DiI and also by anterograde degeneration and biotinylated dextran amine labeling of retinotectal fibers in chicks. The results strongly suggest that many of the RGCs that express immunoreactivity to nAChRβ2 send axons to tectal layer 7 and are mainly classified into the simple-type of Groups II and III, which contain the cells providing middle-sized to large dendritic fields with simple dendritic arborization. These nAChRβ2-immunoreactive RGCs receive visual information via the multiple sublayers of the inner plexiform layer.  相似文献   

11.
12.
The anti-inflammatory properties of soyasaponins (especially soyasaponins with different chemical structures) have scarcely been investigated. We investigated the inhibitory effects of five structural types of soyasaponins (soyasaponin A1, A2, I and soyasapogenol A, B) on the induction of nitric oxide (NO) and inducible NO synthase (iNOS) in murine RAW 264.7 cells activated with lipopolysaccharide (LPS). Soyasaponin A1, A2 and I (25-200 μg/mL) dose-dependently inhibited the production of NO and tumor necrosis factor α (TNF-α) in LPS-activated macrophages, whereas soyasapogenol A and B did not. Furthermore, soyasaponin A1, A2 and I suppressed the iNOS enzyme activity and down-regulated the iNOS mRNA expression both in a dose-dependent manner. The reporter gene assay revealed that soyasaponin A1, A2 and I decreased LPS-induced nuclear factor kappa B (NF-κB) activity. Soyasaponin A1, A2 and I exhibit anti-inflammatory properties by suppressing NO production in LPS-stimulated RAW 264.7 cells through attenuation of NF-κB-mediated iNOS expression. It is proposed that the sugar chains present in the structures of soyasaponins are important for their anti-inflammatory activities. These results have important implication for using selected soyasaponins towards the development of effective chemopreventive and anti-inflammatory agents.  相似文献   

13.
Randlett O  Poggi L  Zolessi FR  Harris WA 《Neuron》2011,70(2):266-280
How the site of axon emergence is specified during neural development is not understood. Previous studies disagree on the relative importance of intrinsic and extrinsic mechanisms. The axons of retinal ganglion cells (RGCs) emerge basally in vivo, yet because RGCs develop from polarized neuroepithelial cells within a polarized environment, disentangling intrinsic and extrinsic influences is a challenge. We use time-lapse imaging to demonstrate that Laminin acting directly on RGCs is necessary and sufficient to orient axon emergence in vivo. Laminin contact with the basal processes of newborn RGCs prevents the cells from entering a stochastic Stage 2 phase, directs the rapid accumulation of the early axonal marker Kif5c560-YFP, and leads to the formation of axonal growth cones. These results suggest that contact-mediated cues may be critical for the site of axon emergence and account for the differences in cellular behavior observed in vitro and in vivo.  相似文献   

14.
BackgroundProtein Kinase C (PKC) is a promiscuous serine/threonine kinase regulating vasodilatory responses in vascular endothelial cells. Calcium-dependent PKCbeta (PKCβ) and calcium-independent PKCeta (PKCη) have both been implicated in the regulation and dysfunction of endothelial responses to shear stress and agonists.ObjectiveWe hypothesized that PKCβ and PKCη differentially modulate shear stress-induced nitric oxide (NO) production by regulating the transduced calcium signals and the resultant eNOS activation. As such, this study sought to characterize the contribution of PKCη and PKCβ in regulating calcium signaling and endothelial nitric oxide synthase (eNOS) activation after exposure of endothelial cells to ATP or shear stress.MethodsBovine aortic endothelial cells were stimulated in vitro under pharmacological inhibition of PKCβ with LY333531 or PKCη targeting with a pseudosubstrate inhibitor. The participation of PKC isozymes in calcium flux, eNOS phosphorylation and NO production was assessed following stimulation with ATP or shear stress.ResultsPKCη proved to be a robust regulator of agonist- and shear stress-induced eNOS activation, modulating calcium fluxes and tuning eNOS activity by multi-site phosphorylation. PKCβ showed modest influence in this pathway, promoting eNOS activation basally and in response to shear stress. Both PKC isozymes contributed to the constitutive and induced phosphorylation of eNOS. The observed PKC signaling architecture is intricate, recruiting Src to mediate a portion of PKCη's control on calcium entry and eNOS phosphorylation. Elucidation of the importance of PKCη in this pathway was tempered by evidence of a single stimulus producing concurrent phosphorylation at ser1179 and thr497 which are antagonistic to eNOS activity.ConclusionsWe have, for the first time, shown in a single species in vitro that shear stress- and ATP-stimulated NO production are differentially regulated by classical and novel PKCs. This study furthers our understanding of the PKC isozyme interplay that optimizes NO production. These considerations will inform the ongoing design of drugs for the treatment of PKC-sensitive cardiovascular pathologies.  相似文献   

15.
Inflammatory mechanisms are proposed to play a role in l-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates l-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with l-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with l-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented l-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after l-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.  相似文献   

16.
To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.  相似文献   

17.
There is growing evidence that oxidative stress contributes to hypertension. Oxidative stress can precede the development of hypertension. In almost all models of hypertension, there is oxidative stress that, if corrected, lowers BP, whereas creation of oxidative stress in normal animals can cause hypertension. There is overexpression of the p22(phox) and Nox-1 components of NADPH oxidase and reduced expression of extracellular superoxide dismutase (EC-SOD) in the kidneys of ANG II-infused rodents, whereas there is overexpression of p47(phox) and gp91(phox) and reduced expression of intracellular SOD with salt loading. Several mechanisms have been identified that can make oxidative stress self-sustaining. Reactive oxygen species (ROS) can enhance afferent arteriolar tone and reactivity both indirectly via potentiation of tubuloglomerular feedback and directly by microvascular mechanisms that diminish endothelium-derived relaxation factor/nitric oxide responses, generate a cyclooxygenase-2-dependent endothelial-derived contracting factor that activates thromboxane-prostanoid receptors, and enhance vascular smooth muscle cells reactivity. ROS can diminish the efficiency with which the kidney uses O(2) for Na(+) transport and thereby diminish the P(O(2)) within the kidney cortex. This may place a break on further ROS generation yet could further enhance vasculopathy and hypertension. There is a tight relationship between oxidative stress in the kidney and the development and maintenance of hypertension.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号