首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies showed a significantly reduced level of hemorphins in the serum of diabetes patients. In order to elucidate the biochemical mechanisms responsible for this anomaly, the influence of hemoglobin glycation on hemorphin generation was studied. The glycation of hemoglobin occurs in the blood of diabetes patients and this could modify its enzymatic digestion and the resulting proteolytic products. Several samples of hemoglobin were obtained from the blood of type 1 diabetes patients (n = 8) and normal healthy control subjects (n = 2). The glycated hemoglobin samples were classified on the basis of their HbA1c values expressed as a percentage of total hemoglobin. Four solutions of glycated hemoglobin characterized by HbA1c values of 6%, 9.1%, 10.7% and 12.1% were treated with cathepsin D and the hemorphins obtained following the proteolysis were compared to controls. It was found that hemorphins were produced whatever the level of glycation of hemoglobin and also that the degree of glycation had no effect on the quantity of hemorphins released. Thus the alteration of hemoglobin does not seem to be the essential reason for the decrease in hemorphin concentrations in the sera of diabetic patients.  相似文献   

2.
This review summarizes recent findings and common principles for intramembrane-cleaving proteases that catalyse critical steps in cell regulation and signalling and which are involved in diseases such as Alzheimer's disease and hepatitis C virus infection.  相似文献   

3.
The catabolic degradation of hemoglobin and of its complex with haptoglobin by lysosomal enzymes from rat liver was studied with special emphasis on the action of cathepsins D and E. The digestion of free hemoglobin can be mainly attributed to the action of cathepsin D [EC 3.4.23.5], while the digestion of the complex in the pH rand 2-3 is due more to the action of cathepsin E than that of cathepsin D. The enzymic activities of both cathepsins were strongly inhibited by pepstatin, and 4M urea inactivated cathepsin E. Measurements of the peroxidase activity and optical rotatory dispersion of the hemoglobin-haptoglobin complex showed that the complex suffered rapid denaturation below pH 2.9.  相似文献   

4.
The current study characterizes the cytokine protein (ELISA) and mRNA (gene array and RT-PCR) profiles of skin-derived mast cells cultured under serum-free conditions when activated by cross-linking of Fc epsilonRI. Prior to mast cell activation, mRNA only for TNF-alpha was detected, while after activation mRNA for IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF substantially increased, and for IL-4 it minimally increased. However, at the protein level certain recombinant cytokines, as measured by ELISAs, were degraded by proteases released by these skin-derived mast cells. IL-6 and IL-13 were most susceptible, followed by IL-5 and TNF-alpha; GM-CSF was completely resistant. These observations also held for the endogenous cytokines produced by activated mast cells. By using protease inhibitors, chymase and cathepsin G, not tryptase, were identified in the mast cell releasates as the likely culprits that digest these cytokines. Their cytokine-degrading capabilities were confirmed with purified chymase and cathepsin G. Soy bean trypsin inhibitor, when added to mast cell releasates, prevented the degradation of exogenously added cytokines and, when added to mast cells prior to their activation, prevented degradation of susceptible endogenous cytokines without affecting either degranulation or GM-CSF production. Consequently, substantial levels of IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF were detected 24-48 h after mast cells had been activated, while none were detected 15 min after activation, by which time preformed granule mediators had been released. IL-4 was not detected at any time point. Thus, unless cytokines are protected from degradation by endogenous proteases, cytokine production by human mast cells with chymase and cathepsin G cells may be grossly underestimated.  相似文献   

5.
Delta-like 1 (Dll1) is a mammalian ligand for Notch receptors. Interactions between Dll1 and Notch in trans activate the Notch pathway, whereas Dll1 binding to Notch in cis inhibits Notch signaling. Dll1 undergoes proteolytic processing in its extracellular domain by ADAM10. In this work we demonstrate that Dll1 represents a substrate for several other members of the ADAM family. In co-transfected cells, Dll1 is constitutively cleaved by ADAM12, and the N-terminal fragment of Dll1 is released to medium. ADAM12-mediated cleavage of Dll1 is cell density-dependent, takes place in cis orientation, and does not require the presence of the cytoplasmic domain of ADAM12. Full-length Dll1, but not its N- or C-terminal proteolytic fragment, co-immunoprecipitates with ADAM12. By using a Notch reporter construct, we show that Dll1 processing by ADAM12 increases Notch signaling in a cell-autonomous manner. Furthermore, ADAM9 and ADAM17 have the ability to process Dll1. In contrast, ADAM15 does not cleave Dll1, although the two proteins still co-immunoprecipitate with each other. Asn-353 present in the catalytic motif of ADAM12 and other Dll1-processing ADAMs, but absent in ADAM15, is necessary for Dll1 cleavage. Dll1 cleavage is reduced in ADAM9/12/15(-/-) mouse embryonic fibroblasts (MEFs), suggesting that the endogenous ADAM9 and/or ADAM12 present in wild type MEFs contribute to Dll1 processing. Finally, the endogenous Dll1 present in primary mouse myoblasts undergoes cleavage in confluent, differentiating myoblast cultures, and this cleavage is decreased by ADAM12 small interfering RNAs. Our findings expand the role of ADAM proteins in the regulation of Notch signaling.  相似文献   

6.
Rat embryo fibroblasts were grown in medium containing 14C-leucine and 3H-thymidine. After a 24-hour chase in nonlabeled medium, cultures were placed in either fresh growth medium or medium containing 10–20 μg/ml cycloheximide. Cell monolayers were processed at daily intervals for three days. Four hours prior to processing, cultures were placed in fresh medium and the accumulation rate of trichloracetic acid soluble 14C in the media assayed. Cycloheximide effects a progressive decrease in the fractional degradation rate of the labeled cell protein, primarily during the first 24 hours. The specific activities of cathepsin D, cathepsin B, and neutral protease correlate closely with the fractional degradation rate. Other lysosomal hydrolases show little change during this period. The activities of the lysosomal proteases approach a new steady state which is correlated with the new steady state leve of protein synthesis. A model is proposed which relates the rate of protein break-down in the cell to the level of protein synthesis. The data also suggests the possibility that subpopulations of high turnover and low turnover cells exist in these cultures.  相似文献   

7.
Apoptosis or programmed cell death is the major mechanism used by multicellular organisms to remove infected, excessive and potentially dangerous cells. Cysteine proteases from the caspase family play a crucial role in the process. However, there is increasing evidence that lysosomal proteases are also involved in apoptosis. In this review various lysosomal proteases and their potential contribution to propagation of apoptosis are discussed.  相似文献   

8.
9.
The degradation of several bioactive peptides and proteins by purified human dipeptidyl peptidase IV is reported. It was hitherto unknown that human gastrin-releasing peptide, human chorionic gonadotropin, human pancreatic polypeptide, sheep prolactin, aprotinin, corticotropin-like intermediate lobe peptide and (Tyr-)melanostatin are substrates of this peptidase. Kinetic constants were determined for the degradation of a number of other natural peptides, including substance P, the degradation of which has been described earlier in a qualitative manner. Generally, small peptides are degraded much more rapidly than proteins. However, the Km-values seem to be independent of the peptide chain length. The influence of the action of dipeptidyl peptidase IV on the biological function of peptides and proteins is discussed.  相似文献   

10.
Morphinomimetic peptides have been purified fromhemoglobin enzymatic hydrolysates and a significantamount of evidence has been accumulated indicatingthat the generation of these peptides (hemorphins)might occur in vivo. In order to investigatetheir putative physiological role and processing fromhemoglobin in vivo, two methods were developed:a specific radioimmunoassay and a UV spectracomparison analysis. These methods were applied to acathepsin D bovine hemoglobin hydrolysate and allowedthe detection of two hemorphin-7 peptides. Thisobservation supports the putative implication ofcathepsin D in the in vivo release ofhemorphins. Among the two methods used in this study,the immunological approach exhibits highersensitivity and represents a useful method toinvestigate the in vivo role and physiologicalprocessing of hemorphins.  相似文献   

11.
C Toniolo 《Biopolymers》1989,28(1):247-257
The use of backbone conformational constraints has acquired increasing importance in the design and synthesis of structurally restricted agonists and antagonists of bioactive peptides. Here I discuss the preferred conformations of four among the most popular types of such peptide surrogates: (a) Peptides from C alpha, alpha-dialkylated residues, (b) tetrazolyl peptides, (c) (gamma- and delta-) lactam-containing peptides, and (d) thiated peptides. Emphasis is given to conformational energy computations and x-ray diffraction analyses of selected model compounds and analogues of small bioactive peptides such as the formylmethionyl tripeptide chemoattractant and MIF.  相似文献   

12.
Experiments were conducted to determine the extent and variability of collagen degradation in human fetal lung fibroblasts. Cells were incubated with [14C]proline, and degradation was measured by determining the hydroxy[14C]proline in a low molecular weight fraction relative to total hydroxy[14C]proline. Average (basal) degradation in stationary phase HFL-1 cells incubated for 8 h was 16 +/- 3%, and substantial alterations in the composition of the labeling medium, e.g., omitting serum and varying pH between 6.8 and 7.8, had no effect. Organic buffers slightly lowered degradation in a manner that was independent of pH. Collagen degradation in two other lung cell lines, Wl-38 and lMR-90, did not differ from the level in HFL-1. Degradation was significantly higher (23 +/- 5%) in HFL-1 cultures labeled for 24 h rather than 8 h, and pulse-washout experiments showed that the rate of degradation was not uniform: after an 8-h pulse, 11% of the hydroxy [14C]proline in the medium was in the low molecular weight fraction, but 31% was in this fraction after a 16-h washout. The lack of effect of either serum deprivation or elevated pH suggests that lysosomal proteases have no direct role in basal degradation; however, NH4Cl decreased the enhanced degradation observed in ascorbate deficiency to basal level, indicating that abnormal molecules synthesized under those conditions are degraded by lysosomal proteases. The appearance of small hydroxy[14C]proline-containing molecules was inhibited by alpha alpha'dipyridyl and cycloheximide in a dose-dependent and reversible manner, demonstrating that their production depends on enzymatic hydroxylation of proline and protein synthesis.  相似文献   

13.
Hu X 《Cytokine》2003,21(6):286-294
Following binding its death receptor on the plasma membrane, tumor necrosis factor (TNF) induces the receptor trimerization and recruits a number of death domain-containing molecules to form the receptor complex. The complex promotes activation of downstream caspase cascade and induces degradation of IkappaBalpha. Caspases are activated using mechanisms of oligomeration and 'self-controlled proteolysis'. According to their structures and functions, apoptosis related caspases can be divided into upstream and downstream caspases. In general, upstream caspases cleave and activate downstream caspases by proteolysis of the Asp-X site. Activated caspases then cleaved target substrates. To date, more than 70 proteins have been identified to be substrates of caspases in mammalian cells. Caspases can alter the function of their target proteins by destroying structural components of the cytoskeleton and nuclear scaffold or by removing their regulatory domains. Activation of NF-kappaB is dependent on the degradation of IkappaBalpha. IkappaB kinase (IKK) phosphorylates IkappaBalpha at the residues 32 and 36 followed by polyubiquitination at lysine 21 and 22 and subsequent degradation of the molecules by 26S proteasome. There is extensive crosstalk between the apoptotic and NF-kappaB signaling pathways that emanate from TNF-R1. On the one hand, activation of NF-kappaB can inactivate caspases; on the other hand, activated caspases can inhibit the activation of NF-kappaB. Both processes involve in proteolysis. This crosstalk may be important for maintaining the balance between the two pathways and for determining whether a cell should live or die.  相似文献   

14.
Biological libraries are powerful tools for discovery of new ligands as well as for identification of cellular interaction partners. Since the first development of the first biological libraries in form of phage displays, numerous biological libraries have been developed. For the development of new ligands, the usage of synthetic oligonucleotides is the method of choice. Generation of random oligonucleotides has been refined and various strategies for random oligonucleotide design were developed. We trace the progress and design of new strategies for the generation of random oligonucleotides, and include a look at arising diversity biases. On the other hand, genomic libraries are widely employed for investigation of cellular protein-protein interactions and targeted search of proteomic binding partners. Expression of random peptides and proteins in a linear form or integrated in a scaffold can be facilitated both in vitro and in vivo. A typical in vitro system, ribosome display, provides the largest available library size. In vivo methods comprise smaller libraries, the size of which depends on their transformation efficiency. Libraries in different hosts such as phage, bacteria, yeast, insect cells, mammalian cells exhibit higher biosynthetic capabilities. The latest library systems are compared and their strengths and limitations are reviewed.  相似文献   

15.
Summary Morphinomimetic peptides have been purified from hemoglobin enzymatic hydrolysates and a significant amount of evidence has been accumulated indicating that the generation of these peptides (hemorphins) might occur in vivo. In order to investigate their putative physiological role and processing from hemoglobin in vivo, two methods were developed: a specific radioimmunoassay and a UV spectra comparison analysis. These methods were applied to a cathepsin D bovine hemoglobin hydrolysate and allowed the detection of two hemorphin-7 peptides. This observation supports the putative implication of cathepsin D in the in vivo release of hemorphins. Among the two methods used in this study, the immunological approach exhibits higher sensitivity and represents a useful method to investigate the in vivo role and physiological processing of hemorphins.  相似文献   

16.
Phosphorylases a and b were inactivated very rapidly by a neutral, trypsin-like protease from rat intestinal muscle. With 32P-phosphorylase a as substrate, it was shown that the initial event in the inactivation was the release of a small, phosphopeptide from the N-terminus of the enzyme, leaving the original 100,000 subunit form virtually unchanged. Subsequent proteolysis was very limited, producing 85, 70 and 65,000 mol. wt. derivatives. The effects of several allosteric modulators of phosphorylase on the rates of inactivation of the two enzymes were studied. Removal of the pyridoxal phosphate cofactor from phosphorylase increased the susceptibility of the b form by three fold while the a form was unaffected. By comparison of these effects with those obtained from digestion with trypsin and chymotrypsin, it is concluded that the intestinal muscle protease has a markedly enhanced ability for inactivating enzymes in their native conformation. Assuming that this property is reflected in vivo, a possible role such neutral proteases in initiating protein degradation is advanced.  相似文献   

17.
18.
Virtually all peptides are biologically active following central administration as a consequence of both direct and indirect cellular actions. Direct effects are mainly interactions with specific membrane receptors but may include unions with other components of the receptor/effector complex. Significant indirect biological effects of exogenous peptides, including apparent secretagogue effects on endogenous peptides largely overlooked in practice, result from extensive competition with endogenous peptides for degradative enzymes (peptidases). A consequence of this competition is enhancement of tonic or intermittent activity of endogenous peptides. The pharmacological profile of any peptide reflects or includes, therefore, the spectrum of endogenous peptides that is protected from peptidase action. It is likely that certain pharmacologically active peptides, including a large number of di-, tri- and oligo-peptides, elicit responses mainly or exclusively by competing for peptidases. Therefore, reliable estimates of the relative contributions of direct and indirect actions of exogenous peptides may be difficult, if not impossible, to obtain.  相似文献   

19.
The ability of synthetic protein fragments to survive the degradative action of aminopeptidases and serum proteolytic enzymes can be remarkably enhanced by slight modifications at their N-terminal alpha-amino group. This can be achieved by addition of beta-alanine or amino acids of the D-configuration, amino acids which are seldom found in a living organism. These modifications do scarcely modify the chemical and physical properties of the peptides, and should be preferred, especially for in vivo tests, to drastic alterations of peptides as produced by dinitrophenylation or dansylation of the amino groups.  相似文献   

20.
With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes — these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号