首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

2.
 Homoeologous pairing at metaphase I was analysed in the standard-type, ph2b and ph1b hybrids of Triticum aestivum (AABBDD) and Aegilops speltoides (SS). Data from relative pairing affinities were used to predict homoeologous relationships of Ae. speltoides chromosomes to wheat. Chromosomes of both species, and their arms, were identified by C-banding. The Ae. speltoides genotype carried genes that induced a high level of homoeologous pairing in the three types of hybrids analyzed. All arms of the seven chromosomes of the S genome showed normal homoeologous pairing, which implies that no apparent chromosome rearrangements occurred in the evolution of Ae. speltoides relative to wheat. A pattern of preferential pairing of two types, A-D and B-S, confirmed that the S genome is very closely related to the B genome of wheat. Although this pairing pattern was also reported in hybrids of wheat with Ae. longissima and Ae. sharonensis, a different behaviour was found in group 5 chromosomes. In the hybrids of Ae. speltoides, chromosome 5B-5S pairing was much more frequent than 5D-5S, while these chromosome associations reached similar frequencies in the hybrids of Ae. longissima and Ae. sharonensis. These results are in agreement with the hypothesis that the B genome of wheat is derived from Ae. speltoides. Received: 8 January 1998 / Accepted: 4 February 1998  相似文献   

3.
P. K. Gupta 《Genetica》1971,42(2):199-213
The work on methods for determining the homoeologous relationship between wheat and rye chromosomes has been reviewed. The results obtained for rye chromosomes belonging to different homoeologous groups have been discussed. It is proposed that chromosome 3R of Lee et al. (1969) should be designated as 1R/3R. It is pointed out that homoeology of all seven rye chromosomes may not be known in the future also, due to translocations. It is, therefore, suggested that Secale montanum should be used instead of S. cereale. Future lines of work have been suggested.  相似文献   

4.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

5.
The relationships of three wheat-Aegilops longissima chromosome addition lines A, C, and D with homoeologous wheat chromosomes were studied in PMC meiosis. Substitutions of alien chromosome A for wheat chromosome 6 B, chromosome C for 1 B and chromosome D for 4 B were obtained. The production of 4 BS/C and 7 BS/D chromosome translocations indicated cytogenetic relationships of C partially to homoeologous wheat chromosomes of group 1 and 4, and D partially to homoeologous wheat chromosomes of group 4 and 7.  相似文献   

6.
This study was planned to identify the chromosomal location of esterase loci in wheat (Triticum aestivum), in comparison to Aegilops uniaristata, using wheat Ae. uniaristata disomic addition and translocation lines. Two loci (Est-N1 and Est-N8) were identified on 3N chromosome of Ae. uniaristata and their probable homoeoloci were, for the first time, mapped close to three RFLP probes (Xpsr56, Xpsr394, and Xpsr1196) on homoeologous group 3 wheat chromosomes.  相似文献   

7.
Summary An attempt to produce a set of addition lines of Aegilops sharonensis to the wheat variety Chinese Spring produced only one addition line. This was due to preferential transmission of one chromosome from Ae. sharonensis. This chromosome was studied in detail by established cytological methods of chromosome observation and by the newer techniques of C-banding and in situ hybridization of a cloned DNA sequence. The chromosome was found to be partially homologous to an Ae. sharonensis chromosome of similar behaviour in another wheat addition line. The incomplete homology of the two Ae. sharonensis chromosomes was due to the presence of a translocated segment of a wheat chromosome. — Substitution lines of the Ae. sharonensis chromosome for wheat homoeologous group 4 were produced and the Ae. sharonensis chromosome thereby designated 4 S l .  相似文献   

8.
Summary C-banding patterns were analysed in 19 different accessions of Aegilops caudata (= Ae. markgrafii, = Triticum dichasians) (2n = 14, genomically CC) from Turkey, Greece and the USSR, and a generalized C-banded karyotype was established. Chromosome specific C-bands are present in all C-genome chromosomes, allowing the identification of each of the seven chromosome pairs. While only minor variations in the C-banding pattern was observed within the accessions, a large amount of polymorphic variation was found between different accessions. C-banding analysis was carried out to identify Ae. caudata chromosomes in the amphiploid Triticum aestivum cv Alcedo — Ae. caudata and in six derived chromosome addition lines. The results show that the amphiploid carries the complete Ae. Caudate chromosome complement and that the addition lines I, II, III, IV, V and VIII carry the Ae. caudata chromosome pairs B, C, D, F, E and G, respectively. One of the two SAT chromosome pairs (A) is missing from the set. C-banding patterns of the added Ae. caudata chromosomes are identical to those present in the ancestor species, indicating that these chromosomes are not structurally rearranged. The results are discussed with respect to the homoeologous relationships of the Ae. caudata chromosomes.  相似文献   

9.
Diploid populations of Aegilops mutica and Aegilops speltoides containing B chromosomes have been used as male parents in crosses with aneuploid genotypes of Triticum aestivum to investigate the effect of B chromosomes on meiotic homologous and homoeologous chromosome pairing. F1 hybrids of T. aestivum/Ae. mutica and T. aestivum/Ae. speltoides segregated into four classes with regard to the degree of meiotic chromosome pairing, irrespective of the presence of B chromosomes. The B chromosomes do not introduce factors altering the level of pairing other than that due to the natural allelic and gene variation occurring in the diploids. Similarly no reduction in pairing of homologous chromosomes was observed in genotypes in which pairs of homologues co-existed with B chromosomes. However, a significant drop in chiasma frequency was observed in F1 hybrids of T. aestivum × Ae. mutica with B chromosomes and T. aestivum × Ae. mutica nullisomic for wheat chromosome 5D with B chromosomes, in temperature regimes of 12° C. No asynapsis occurred in similar hybrids in the absence of Mutica B chromosomes at low temperatures. The low-temperature sensitive phase lies early in the pre-meiotic interphase. In this instance the Mutica B chromosomes are interacting with specific gene loci of the A chromosomes. Synaptic pairing has been observed between A and B chromosomes in Ae. mutica. A high frequency of pollen mother cells with twice the number of chromosomes was observed in hybrids in the presence of Mutica B chromosomes due to failure of spindle formation at the last pre-meiotic mitosis. Meiotic spindle irregularities occurred in hybrids containing Speltoides B chromosomes. Hybrids of Ae. speltoides + B's X Ae. mutica + B's displayed the mitotic and meiotic spindle abnormalities introduced by the presence of the B chromosomes of each parent.  相似文献   

10.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   

11.
The Triticum aestivum — Aegilops biuncialis (2n=4x=28; UbUbMbMb) disomic addition lines 2Mb, 3Mb, 7Mb and 3Ub were crossed with the wheat cv. Chinese Spring ph1b mutant genotype in order to induce homoeologous pairing, with the final goal of introgressing Ae. biuncialis chromatin into cultivated wheat. Wheat-Aegilops homoeologous chromosome pairing was studied in metaphase I of meiosis in the F1 hybrid lines. Using U and M genomic probes, genomic in situ hybridization (GISH) demonstrated the occurrence of wheat-Aegilops homoeologous pairing in the case of chromosomes 2Mb, 3Mb and 3Ub, but not in the case of 7Mb. The wheat-Aegilops pairing frequency decreased in the following order: 2Mb > 3Mb > 3Ub > 7Mb, which may reflect differences in the wheat-Aegilops homoeologous relationships between the examined Aegilops chromosomes. The selection of wheat-Aegilops homoeologous recombinations could be successful in later generations.  相似文献   

12.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

13.
 We describe the use of wheat microsatellites for the discrimination of Aegilops markgrafii chromosomes. Twenty out of eighty eight wheat microsatellites (WMS) tested were able to distinguish Triticum aestivum-Ae. markgrafii addition lines. Six, three, three, one and six of 18 WMS can be used as markers for single Ae. markgrafii chromosomes B, C, D, F and G, respectively. Addition line A is not available but additional bands, appearing only in Ae. markgrafii and the T. aestivum-Ae. markgrafii amphiploid and not in any of the available addition lines, indicate that three WMS detect markers for Ae. markgrafii chromosomes A. Addition line E could not be detected by any of the WMS markers applied, although the 20 WMS represented all the homologous groups of wheat. All three WMS located on the short arm of group-2 chromosomes were located on Ae. markgrafii chromosome B; three of four WMS, located on the long arm of wheat group-2 chromosomes, were specific to Ae. markgrafii chromosome G and three of four WMS, specific to group-5 chromosomes, were markers for Ae. markgrafii chromosome C, indicating the homoeology of these wheat chromosome arms with the respective Ae. markgrafii chromosomes. Received: 29 May 1997 / Accepted: 10 September 1997  相似文献   

14.
Comparative mapping in grasses. Oat relationships   总被引:8,自引:0,他引:8  
The development of RFLP linkage maps in hexaploid and diploid oat allows us to study genetic relationships of these species at the DNA level. In this report, we present the extension of a previously developed diploid oat map (Avena atlantica x A. hirtula) and its molecular-genetic relationships with wheat, rice and maize. Examination of 92–99% of the length of the oat genome map with probes common to Triticeae species, rice or maize showed that 84, 79 and 71%, respectively, was conserved between these species and oat. Generally, the orders of loci among chromosomes homoeologous to oat chromosomes A and D were the most conserved and those of chromosomes homoeologous to oat chromosome G were the least conserved. Conservation was observed for blocks ranging from whole chromosomes 101 cM long to small segments 2.5 cM long containing two loci. Comparison of the homoeologous segments of Triticeae, rice and maize relative to oat indicated that certain regions have been maintained in all four species. The relative positions of major genes governing traits such as seed storage proteins and resistance to leaf rusts have been conserved between cultivated oat and Triticeae species. Also, the locations of three vernalization/or photo-period response genes identified in hexaploid oat correspond to the locations of similar genes in homoeologous chromosomes of wheat, rice or maize. The locations of the centromeres for six of the seven oat chromosomes were estimated based on the homoeologous segments between oat and Triticeae chromosomes.  相似文献   

15.
RFLP analyses were performed on wheat-Aegilops uniaristata Vis. addition and translocation lines to confirm the identity of added N-genome chromosomes. Complete 1N, 3N, 4N, 5N and 7N chromosome additions were identified, while the complete long arm and only part of the short arm was identified for chromosome 2N. There were no wheat-like 4/5 and 4/7 translocations in the Ae. uniaristata chromosomes. Chromosome 3N carried an asymmetric pericentric inversion, and the translocation line was a product of centric fusion between the long arms of chromosomes 3B and 3N. Chromosome-specific RAPD and microsatellite markers were also identified for all the added Ae. uniaristata chromosomes available in this set of addition lines. A new genomic in situ hybridization protocol combining pre-annealing of probe and blocking DNA and prehybridization with blocking DNA was developed to differentiate the very closely related genomes of Ae. uniaristata and wheat. Hybridization sites for the repetitive DNA sequences pAs1, pSc119.2 and pTa71 were identified on the N-genome chromosomes of Ae. uniaristata using the fluorescent in situ hybridization technique. Results showed deviation from the previously published ideogram of this species. A new ideogram, which shows the hybridization sites for the above sequences, was produced in which the chromosomes are arranged according to their homoeologous group. Received: 23 April 1999 / Accepted: 6 August 1999  相似文献   

16.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

17.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

18.
Summary Meiotic associations of different wheat-Aegilops variabilis and wheat-Ae. kotschyi hybrid combinations with low and high homoeologous pairing were analyzed at metaphase I. Five types of pairing involving wheat and Aegilops genomes were identified by using C-banding. A genotype that seems to promote homoeologous pairing has been found in Ae. variabilis var. cylindrostachys. Its effect is detectable in the low pairing hybrids but not in the high ones. Pairing affinity has been analyzed on the basis of metaphase I associations in the low and high homoeologous pairing hybrids, and in bivalents and multivalents in the high pairing hybrids. The results indicate that the amount of bound arms of each type of identifiable association relative to the total associations formed (relative contribution) was not maintained, either between the different levels of pairing (low and high) or between different meiotic configurations (bivalents and multivalents). These findings seem to indicate that quantifications of genomic relationships based on the amount of chromosome pairing at metaphase I must be carefully done in this type of hybrid combinations.  相似文献   

19.
During evolutionary history many grasses from the tribe Triticeae have undergone interspecific hybridization, resulting in allopolyploidy; whereas homoploid hybrid speciation was found only in rye. Homoeologous chromosomes within the Triticeae preserved cross‐species macrocolinearity, except for a few species with rearranged genomes. Aegilops markgrafii, a diploid wild relative of wheat (2n = 2x = 14), has a highly asymmetrical karyotype that is indicative of chromosome rearrangements. Molecular cytogenetics and next‐generation sequencing were used to explore the genome organization. Fluorescence in situ hybridization with a set of wheat cDNAs allowed the macrostructure and cross‐genome homoeology of the Ae. markgrafii chromosomes to be established. Two chromosomes maintained colinearity, whereas the remaining were highly rearranged as a result of inversions and inter‐ and intrachromosomal translocations. We used sets of barley and wheat orthologous gene sequences to compare discrete parts of the Ae. markgrafii genome involved in the rearrangements. Analysis of sequence identity profiles and phylogenic relationships grouped chromosome blocks into two distinct clusters. Chromosome painting revealed the distribution of transposable elements and differentiated chromosome blocks into two groups consistent with the sequence analyses. These data suggest that introgressive hybridization accompanied by gross chromosome rearrangements might have had an impact on karyotype evolution and homoploid speciation in Ae. markgrafii.  相似文献   

20.
The aneuploids of Chinese Spring wheat have been used to locate the genes(Ti-2) coding for a novel series of trypsin inhibitors to the long arms of the homoeologous group 5 chromosomes. Three allelic variants at the 5D locus were detected in a limited survey among wheat varieties, but no variation at the loci on either chromosome 5A or chromosome 5B was detected. Homoeoloci were found in a number of alien relatives, and in the majority of cases, these were present on the group 5 homoeologue. However, inAegilops umbellulata, theTi-U2 locus was located on a chromosome presumed to belong to homoeologous group 1. NoHordeum vulgare orH. chilense Ti-2 gene was expressed in a wheat background. This new marker will be especially useful as a screening mechanism for nullisomy of chromosome 5B in work aimed at introgression of alien chromatin into wheat.The Agricultural Genetics Company is thanked for financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号