首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
赤霉素信号转导与植物的矮化   总被引:3,自引:0,他引:3  
论述近年来在拟南芥、水稻等模式植物中赤霉素信号转导的研究进展。通过对赤霉素相关突变体的生理研究 ,鉴定出几个介入赤霉素信号转导过程的重要基因 ,并对这些基因的产物进行分析 ,根据相应的蛋白特征结构域 ,推导了它们可能具有的功能。利用双突变体 ,分析了这些基因的上下游关系 ,确定了在植物中 ,GA信号转导的几个途径。在此基础上提出了赤霉素信号转导的基本模式 :阻遏是GA信号转导过程中最基本的方式 ,GA信号通过去除阻遏作用来激活转导途径 ,从而调节GA相关的生长与发育。  相似文献   

2.
赤霉素调节植物对非生物逆境的耐性   总被引:1,自引:0,他引:1  
赤霉素(GAs)是一类重要的植物激素,调控植物生长发育的诸多方面.最近的研究表明,GA也参与对生物与非生物胁迫的响应,然而GA参与非生物胁迫响应的遗传学证据及其机制有待于进一步研究.本实验室前期研究证明,水稻EullfELONGATEDUPPERMOSTINTERNODE)通过一个新的生化途径降解体内的活性赤霉素分子,并参与调控水稻对病原菌的基础抗病性.本研究发现,euil突变体对盐胁迫能力降低,而超表达EUll基因的水稻和拟南芥耐盐性显著提高.进一步研究发现,积累高含量赤霉素的水稻euil突变体对脱落酸(ABA)的敏感性下降,而赤霉素缺失的EUll超表达转基因水稻和拟南芥均改变了对于ABA的敏感性.EUll基因的转录受逆境诱导,其功能缺失与超表达调控了逆境标志基因的表达.综上推测,GA可能是通过影响ABA的信号途径从而改变了植物对非生物胁迫的响应.  相似文献   

3.
植物赤霉素矮化突变体研究进展   总被引:10,自引:0,他引:10  
赤霉素(GAs)在植物种子萌发、茎的伸长和花的发育等方面起着非常重要的作用。近年来,随着研究手段和技术不断进步,对赤霉素(GA)生物合成和信号传导过程中相关基因的研究取得了惊人的进展。与GA有关的矮化突变体主要有GA缺陷型和不敏感型两类,本文对与GA生物合成和信号传导过程中有关的这两类矮突变体的研究进展进行综述。对这些这些突变体的研究促进了对赤霉素生物合成和信号传导途径的认识,同时为赤霉素更好地利用提供了科学依据。  相似文献   

4.
高等植物赤霉素代谢及其信号转导通路   总被引:2,自引:0,他引:2  
赤霉素是一类重要的植物激素,对植物的生长发育,如种子的萌发、茎的延展、叶片的生长、休眠芽的萌发以及植物的花和种子的发育等生理具有重要的调控作用。从1926年被发现至今,阐明了赤霉素代谢机理及调控机制,明确了赤霉素在植物体内的信号转导途径。本文综述了赤霉素的生物合成途径及其平衡的调节;赤霉素受体GID1、DELLA蛋白在赤霉素信号转导途径中的作用及相关研究;泛素介导的DELLA蛋白降解在赤霉素信号转导中的研究进展。  相似文献   

5.
赤霉素合成基因的克隆以及其相关矮化突变体   总被引:4,自引:0,他引:4  
矮化突变体在阐明植物茎的生长发育调节机制和植物育种中具有十分重要的作用。研究表明,赤霉素(GA)与植物矮化突变体的产生有密切关系。目前运用各种不同的方法,几乎所有编码GA合成过程中的酶的基因都被克隆出来了。近年来,一系列新方法更加促进了GA调控的研究进展。现就GA合成过程中相关基因的克隆、GA的信号转导以及如何进行GA调控等方面进行综述。  相似文献   

6.
陆地棉矮化突变体Ari1327茎尖的转录组分析   总被引:2,自引:0,他引:2  
为了从分子水平上研究陆地棉矮秆突变体Ari1327的矮化机理,本研究以矮秆突变体Ari1327、野生型Ari971和高秆突变体Ari3697的茎尖为材料,建立3个cDNA文库,用Illumina HiSeqTM2000系统对3个材料的茎尖cDNA进行转录组测序。3个文库测序共得4.9 G数据量,拼接得到Unigene 70877个。通过矮化突变体Ari1327与野生型Ari971和高秆突变体Ari3697两个文库的差异筛选,得到13919个与矮化相关的差异表达基因,其中5406个表现上调,8513个表现下调。GO功能和KEGG通路富集发现,差异基因在植物激素信号转导途径显著富集。通过实时荧光定量PCR(qRT-PCR)验证,推测Ari1327的矮化可能与赤霉素和生长素2种激素的信号转导及互作有关。转录组测序得到的大量差异基因,为深入研究棉花的矮化机理具有重要参考价值,同时为棉花的矮化育种工作奠定了基础。  相似文献   

7.
赤霉素(Gibberellin)是一类非常重要的植物激素,在高等植物生命活动的整个周期都起着重要的调控作用。从毛竹Phyllostachys edulis基因组中共鉴定出23个赤霉素途径基因,包括赤霉素生物合成相关的8个GA20ox和1个GA3ox基因、降解相关的8个GA2ox基因、参与赤霉素感知的2个GID1基因以及信号转导的2个GID2基因和2个DELLA基因。拟南芥、水稻和毛竹的系统进化树和保守基序分析显示赤霉素的合成代谢与信号转导在这些物种中是高度保守的。利用外源赤霉素处理毛竹种子和幼苗,发现赤霉素能显著提高种子的萌发率和幼苗的茎秆伸长,并且有着最佳的作用浓度。在GA3处理后,毛竹体内赤霉素生物合成基因GA20ox和GA3ox表达量均下调而降解活性赤霉素的GA2ox基因表达量上调;赤霉素受体GID1和正调控基因GID2的转录水平显著提高而负调控基因DELLA的表达受到抑制。这些基因在竹笋茎秆的不同形态学位置表达差异明显,大部分赤霉素生物合成与降解的相关基因GA20ox、GA3ox和GA2ox以及赤霉素受体GID1和正调控基因GID2都在竹笋的形态学上端大量表达,而赤霉素信号转导的阻遏基因DELLA在笋体形态学底端大量积累而顶端基本不表达。  相似文献   

8.
雄性核不育水稻矮秆突变体突变分子机制的初步研究   总被引:1,自引:0,他引:1  
以株-1S、SV1S、SV14S为研究材料,分析这3种材料的胚乳α-淀粉酶活性、第二叶鞘及节间长度对赤霉素(GA3)反应,结果表明来源于株-IS的SVIS、SV14S突变体的矮化变异与赤霉素信号传导途径无明显关系.此外,通过3种材料的基因组DNA和线粒体DNA的RAPD分析,发现矮秆突变体株系的基因组DNA和线粒体DNA都存在一定的变化,从而在DNA分子水平上进一步证实了SV1S和SV14S突变体的遗传突变.其突变的生理机制与赤霉素信号传导途径无明显关系,很可能与赤霉素生物合成途径有关.  相似文献   

9.
果树赤霉素代谢与信号途径研究进展   总被引:1,自引:0,他引:1  
赤霉素作为5大植物激素之一,在果树的花芽分化、花序发育、开花坐果、果实的生长发育及植株的形态建成等方面扮演着重要的角色,但对果树赤霉素的分子生物学研究与其他大田作物相比差距较大。为了在果树生产中能更加合理有效地利用赤霉素调控果树花果发育,研究果树赤霉素的合成及其信号转导途径的分子调控机制十分必要。研究发现GA合成的关键酶KO、GA2ox及GA20ox的表达均与果树矮化呈负相关,而KS的含量则与植株高矮呈正相关,板栗雄性不育现象也与KO、KAO的表达量密切相关。GAMYB基因及LFY基因则在果树的成花诱导和雄蕊发育等生殖生长过程中发挥重要作用。DELLA蛋白在果树的GA信号途径中作为负调控因子可致使矮化植株形成,在果树的细胞周期循环过程、转录调控、花的形成、细胞的信号转导及许多生理过程中,DELLA蛋白泛素化降解均扮演着至关重要的角色。主要从果树赤霉素的合成及赤霉素的信号途径两大方面,着重对果树赤霉素合成过程中的关键酶基因及其定位、果树赤霉素信号途径的重要元件如赤霉素受体GID1、DELLA蛋白等进行了综述,以期为高效利用赤霉素调控果树生长发育提供重要的理论参考。  相似文献   

10.
作为一种渗透调节物质,人们对脯氨酸已经有了很多的研究,然而脯氨酸在生命体生长发育中的作用还知之甚少。为了研究脯氨酸在生长发育中的作用,筛选得到了拟南芥的脯氨酸抗性突变体kao2。突变体在不同浓度脯氨酸培养基上均表现出抗性,但是突变体中脯氨酸的吸收没有显著变化,降解关键基因表达也没有增多。Tail-PCR进行突变基因克隆的结果表明,T-DNA插入位点位于AtKAO2(At2g32440)的第一个外显子,且插入导致AtKAO2基因不再表达。拟南芥突变体库中订购的kao2-2同样表现出脯氨酸抗性表型。此外,kao2表现出胁迫敏感表型。kao2表现出明显的晚花表型,并且赤霉素的添加能够部分挽救晚花表型。而kao2突变体中开花抑制因子FLC表达升高,而开花促进基因FT的表达降低。研究在脯氨酸与开花信号转导途径之间建立了联系,为脯氨酸对开花途径的信号作用提供了新的证据,为以后的研究提供了新的材料。  相似文献   

11.
The hormone gibberellin (GA) plays an essential role in many aspects of plant growth and development, such as seed germination, stem elongation and flower development. In recent years, exciting progress has been made in understanding how the biosynthesis of this hormone is regulated by endogenous and environmental factors. This has resulted from isolation of genes encoding enzymes involved in GA biosynthesis and metabolism, which also enabled us to manipulate the pathway by modifying the expression of these genes in transgenic plants. In addition, new GA response mutants provided information about how signaling components are involved in feedback regulation of the GA biosynthetic pathway.  相似文献   

12.
Gibberellins (GAs) constitute a large family of tetracyclic diterpenoid carboxylic acids, some members of which function as growth hormones in higher plants. As well as being phytohormones, GAs are also present in some fungi and bacteria. In recent years, GA biosynthetic genes from Fusarium fujikuroi and Arabidopsis thaliana have been cloned and well characterised. Although higher plants and the fungus both produce structurally identical GAs, there are important differences indicating that GA biosynthetic pathways have evolved independently in higher plants and fungi. The fact that horizontal gene transfer of GA genes from the plant to the fungus can be excluded, and that GA genes are obviously missing in closely related Fusarium species, raises the question of the origin of fungal GA biosynthetic genes. Besides characterisation of F. fujikuroi GA pathway genes, much progress has been made in the molecular analysis of regulatory mechanisms, especially the nitrogen metabolite repression controlling fungal GA biosynthesis. Basic research in this field has been shown to have an impact on biotechnology. Cloning of genes, construction of knock-out mutants, gene amplification, and regulation studies at the molecular level are powerful tools for improvement of production strains. Besides increased yields of the final product, GA3, it is now possible to produce intermediates of the GA biosynthetic pathway, such as ent-kaurene, ent-kaurenoic acid, and GA14, in high amounts using different knock-out mutants. This review concentrates mainly on the fungal biosynthetic pathway, the genes and enzymes involved, the regulation network, the biotechnological relevance of recent studies, and on evolutionary aspects of GA biosynthetic genes.  相似文献   

13.
Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component of GA signal transduction, spy mutants and plants containing a 35S:SPY construct have been examined. A detailed investigation of the spy mutant phenotype suggests that SPY may play a role in plant development beyond its role in GA signaling. Consistent with this suggestion, the analysis of spy er plants suggests that the ERECTA (ER) gene, which has not been implicated as having a role in GA signaling, appears to enhance the non-GA spy mutant phenotypes. Arabidopsis plants containing a 35S:SPY construct possess reduced GA response at seed germination, but also possess phenotypes consistent with increased GA response, although not identical to spy mutants, during later vegetative and reproductive development. Based on these results, the hypothesis that SPY is specific for GA signaling is rejected. Instead, it is proposed that SPY is a negative regulator of GA response that has additional roles in plant development.  相似文献   

14.
The phytohormone gibberellin (GA) is a vital plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCFSLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptoms and abnormal flower development. The infection by ALCScV significantly altered the expression of GA pathway-related genes and decreased the content of endogenous GA in N. benthamiana. Furthermore, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were obtained from experiments with the C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism by which geminivirus C4 proteins control viral infection and disease symptom development by interfering with the GA signaling pathway.  相似文献   

15.
Gibberellins and Light-Stimulated Seed Germination   总被引:3,自引:0,他引:3  
Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.  相似文献   

16.
17.
18.
19.
Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA‐deficient mutants of Arabidopsis (ga1‐3) and Oryza sativa (d18‐AD), accompanied by the reduced expression of several chloroplast division‐related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild‐type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time‐course analysis showed that cell expansion‐related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA‐treated ga1‐3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA‐response signaling mutants suggest that RGA and GAI are the major repressors regulating GA‐induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号