首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential transformation of mammary epithelial cells by Wnt genes.   总被引:12,自引:0,他引:12       下载免费PDF全文
The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent.  相似文献   

2.
The proto-oncogene Wnt-1 plays an essential role in fetal brain development and causes hyperplasia and tumorigenesis when activated ectopically in the mouse mammary gland. When expressed in certain mammary epithelial cell lines, the gene causes morphological transformation and excess cell proliferation at confluence. Like other members of the mammalian Wnt family, Wnt-1 encodes secretory glycoproteins which have been detected in association with the extracellular matrix or cell surface but which have not previously been found in a soluble or biologically active form. We show here that conditioned medium harvested from a mammary cell line expressing Wnt-1 contains soluble Wnt-1 protein and induces mitogenesis and transformation of mammary target cells. By immunodepletion of medium containing epitope-tagged Wnt-1, we show that at least 60% of this activity is specifically dependent on Wnt-1 protein. These results provide the first demonstration that a mammalian Wnt protein can act as a diffusible extracellular signaling factor.  相似文献   

3.
4.
Members of the Wnt gene family are proposed to function in both normal development and differentiation as well as in mammary tumorigenesis. To understand the function of Wnt proteins in these two processes, we present here a biochemical characterization of seven Wnt family members. For these studies, AtT-20 cells, a neuroendocrine cell line previously shown to efficiently process and secrete Wnt-1, was transfected with expression vectors encoding Wnt family members. All of the newly characterized Wnt proteins are glycosylated, secreted proteins that are tightly associated with the cell surface or extracellular matrix. We have also identified native Wnt proteins in retinoic acid-treated P19 embryonal carcinoma cells, and they exhibit the same biochemical characteristics as the recombinant proteins. These data suggest that Wnt family members function in cell to cell signaling in a fashion similar to Wnt-1.  相似文献   

5.
Expression of Wnt-4, a member of the Wnt gene family, is induced during early pregnancy in the mouse mammary gland. To investigate the function of Wnt-4, we used a recombinant retrovirus to constitutively express the gene in transplanted mammary epithelium grown in virgin animals. In fully grown glands, Wnt-4 expression resulted in ducts that were more highly branched than normal and caused some premature alveolar development. These changes resembled those seen during pregnancy, suggesting that endogenous Wnt-4 expression may regulate epithelial branching in early pregnancy. The modified growth pattern induced by Wnt-4 expression was similar to that induced by Wnt-1, one of the members of the Wnt gene family activated by mouse mammary tumour virus. As Wnt-1 is not normally expressed in the mammary gland, it may exert its effect on the mammary gland by activating a developmental pathway normally regulated by Wnt-4.  相似文献   

6.
The murine Wnt family of proteins consists of at least 12 members that possess significant amino acid homology. Current evidence suggests that these proteins are secreted cell-signaling molecules which are likely to have multiple roles during both embryonic development and oncogenesis. Although the biochemical properties of Wnt-1 have been thoroughly examined, less is known about the characteristics of other Wnt family members. We have compared the properties of six murine Wnt proteins (Wnt-1, Wnt-3a, Wnt-5a, Wnt-5b, Wnt-6, and Wnt-7b) transiently expressed in COS cells. All members enter the endoplasmic reticulum (ER) and are glycosylated. However, all six Wnt proteins are primarily retained in the ER in association with BiP, a resident ER protein that binds to improperly folded proteins and prevents their secretion and/or promotes proper folding. Although all Wnt family members examined are similarly processed, one notable difference was identified. Whereas addition of suramin to COS cell cultures significantly increases the levels of all six Wnts in the medium, the addition of heparin only influences the levels of Wnt-1, Wnt-6, and Wnt-7b.  相似文献   

7.

Background

Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny.

Results

In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the β-casein gene in response to lactogenic hormones. We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3β hyperphosphorylation and β-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed.

Conclusion

This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to β-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.  相似文献   

8.
9.
10.
Dual roles of Wnt signaling during chondrogenesis in the chicken limb   总被引:17,自引:0,他引:17  
Long bones of the appendicular skeleton are formed from a cartilage template in a process known as endochondral bone development. Chondrocytes within this template undergo a progressive program of differentiation from proliferating to postmitotic prehypertrophic to hypertrophic chondrocytes, while mesenchymal cells immediately surrounding the early cartilage template form the perichondrium. Recently, members of the Wnt family of secreted signaling molecules have been implicated in regulating chondrocyte differentiation. We find that Wnt-5a, Wnt-5b and Wnt-4 genes are expressed in chondrogenic regions of the chicken limb: Wnt-5a is expressed in the perichondrium, Wnt-5b is expressed in a subpopulation of prehypertrophic chondrocytes and in the outermost cell layer of the perichondrium, and Wnt-4 is expressed in cells of the joint region. Misexpression experiments demonstrate that two of these Wnt molecules, Wnt-5a and Wnt-4, have opposing effects on the differentiation of chondrocytes and that these effects are mediated through divergent signaling pathways. Specifically, Wnt-5a misexpression delays the maturation of chondrocytes and the onset of bone collar formation, while Wnt-4 misexpression accelerates these two processes. Misexpression of a stabilized form of beta-catenin also results in accelerated chondrogenesis, suggesting that a beta-catenin/TCF-LEF complex is involved in mediating the positive regulatory effect of Wnt-4. A number of the genes involved in Wnt signal tranduction, including two members of the Frizzled gene family, which are believed to encode Wnt-receptors, show very dynamic and distinct expression patterns in cartilaginous elements of developing chicken limbs. Misexpression of putative dominant-negative forms of the two Frizzled proteins results in severe shortening of the infected cartilage elements due to a delay in chondrocyte maturation, indicating that an endogenous Wnt signal does indeed function to promote chondrogenic differentiation.  相似文献   

11.
The mouse Wnt-1 gene plays an essential role in fetal brain development and can contribute to tumorigenesis when activated aberrantly in the mammary gland. The gene encodes secretory glycoproteins associated with the extracellular or pericellular matrix, and it has been proposed that Wnt-1, as well as its Drosophila homolog wingless, may function in intercellular signalling. We show here that fibroblasts expressing Wnt-1 protein, although not transformed themselves, are able to elicit morphological transformation of neighboring C57MG mammary epithelial cells in coculture experiments. Heparin inhibits this effect, possibly by displacing Wnt-1 protein from its normal site of action. Our results indicate that the Wnt-1 gene can act via a paracrine mechanism in cell culture and strongly support the notion that in vivo the gene may function in cell-to-cell communication.  相似文献   

12.
Members of the Wnt gene family, encoding secreted cystein-rich glycoproteins, have been isolated from a variety of organisms. They serve as important developmental signaling molecules and have been implicated to play crucial roles in such diverse processes as cancer, organogenesis and pattern formation. Experiments by Zakany and Duboule, and Rudnicki and Brown have suggested a role for Wnt molecules in negatively regulating chondrogenesis. However, neither of the two Wnt genes used in these studies is endogenously expressed in chondrogenic regions. We and others have found that in the chick limb at least four members of the Wnt gene family, Wnt-4, Wnt-5a, Wnt-5b, and Wnt-14, are expressed in defined regions of the developing chondrogenic elements. With the exception of Wnt-5b, which is expressed in perichondrial cells and prehypertrophic chondrocytes, the expression of the three other Wnt genes is restricted to the perichondrium surrounding the cartilage element. Viral misexpression studies in the chick suggested that Wnt-4 acts as a positive signal originating from the joint region and when misexpressed accelerates chondrocyte maturation, while Wnt-5a and Wnt-5b both negatively regulate chondrocyte maturation. We have further shown that they utilize different signaling pathways; while Wnt-4 signals through the canonical Wnt-pathway, Wnt-5a and Wnt-5b do not. Interestingly, the delay in chondrocyte maturation due to Wnt-5a misexpression is associated with an up regulation of Wnt-5b expression in the prehypertropic chondrocytes. Concomitantly, Wnt-5b misexpression also delays chondrocyte maturation. However, preliminary studies suggest that the two Wnt genes affect different steps in the maturation process. Wnt signaling, however, is not only regulating chondrogenesis but is also involved in the segmentation process of the appendicular skeleton. Localized misexpression of the fourth Wnt gene, Wnt-14, which is expressed early in the presumptive joint region, induces morphological and molecular changes indicative of an early joint interzone, suggesting that Wnt-14 plays a pivotal role in the induction of the joint interzone.  相似文献   

13.
The claudins are a family of tight junction proteins that display varied tissue distribution and preferential specificity. We recently identified by microarray analysis, members of this family, particularly claudin 1 (cldn1), as highly upregulated genes in the mouse mammary gland during early involution. Gene expression was confirmed by immunohistochemistry and real-time PCR. We then examined gene and protein expression throughout normal mammary gland development. The cldn3 gene showed a steady increase in expression from pregnancy to involution, while cldn1 and cldn4 gene expression increased during pregnancy, but decreased sharply by D10 of lactation, and once again was significantly increased by D1 of involution (P < 0.001 for both genes). The different patterns of gene expression observed between cldn3, and cldn1, and 4 suggest that different family members may be functionally important at different times during mouse mammary gland development. All three genes exhibited a high level of expression at day 1 (D1) of involution, followed by a dramatic decrease in gene expression to day 10 of involution. Immunostaining with the cldn3 antibody showed intense staining of epithelial cells; however, a lesser degree of staining was evident with the cldn1 antibody. In addition to the lateral staining of epithelial cells, basal staining was evident at D1 and D2 of involution and cytoplasmic staining was evident during lactation. Since claudins are known to play a role as tight junction proteins, lateral and basal staining may suggest a role in other functions such as vesicle trafficking or remodeling of tight junctions at different stages of mammary gland development. Cldn1 and 3 antibodies also stained epithelial cells in mouse mammary tumors. In summary, cldn1, 3, and 4 are differentially expressed in the mammary gland during pregnancy, lactation, and involution, suggesting different roles for these proteins at different stages of mammary gland function. In addition, cldn1 and cldn3 are detected in mammary tumors and the wide distribution of cldn3 in particular, suggest specific roles for these proteins in mammary tumorigenesis.  相似文献   

14.
During early vertebrate development, a series of neuromeres divides the central nervous system from the forebrain to the spinal cord. Here we examine in more detail the expression of Wnt-3, a member of the Wnt gene family of secreted proteins, in the developing diencephalon, in comparison to the expression of the homeobox gene Dlx-1. In 9.5-day mouse embryos, Wnt-3 is expressed in a restricted area of the diencephalon before any morphological signs of subdivisions appear. Around embryonic day 11.5, Wnt-3 expression becomes restricted to one of the neuromeres of the diencephalon, the dorsal thalamus. Dlx-1 is expressed in a non-overlapping area immediately anterior to and abutting the Wnt-3 expressing domain, corresponding to the ventral thalamus. In addition, Wnt-3 is expressed in the midbrain-hindbrain region. In the adult mouse, Wnt-3 and Dlx-1 are expressed in subsets of neural cells derived from the original areas of expression in the diencephalon. Taken together, our results suggest that Wnt-3 and Dlx-1 provide positional information for the regional specification of neuromeres in the forebrain. The continued expression of these genes in the adult mouse brain suggests a distinct role in the mature CNS.  相似文献   

15.
16.
17.
18.
Wnt signaling is important in organogenesis, and aberrant signaling in mature cells is associated with tumorigenesis. Several members of the Wnt family of signaling molecules are expressed in the developing pituitary gland. Wnt5a is expressed in the neuroectoderm that induces pituitary gland development and has been proposed to influence pituitary cell specification. We discovered that mice deficient in Wnt5a display abnormal morphology in the dorsal part of the developing pituitary. The expression of downstream effectors of the canonical Wnt pathway is not altered, and expression of genes in other signaling pathways such as Shh, Fgf8, Fgf10 and Fgfr2b is intact. Prop1 and Hesx1 are also important for normal shape of the pituitary primordium, but their expression is unaltered in the Wnt5a mutants. Specification of the hormone-producing cell types of the mature anterior pituitary gland occurs appropriately. This study suggests that the primary role of Wnt5a in the developing pituitary gland is in establishment of the shape of the gland.  相似文献   

19.
TheWntgene family consists of at least 15 structurally related genes that encode secreted extracellular signaling factors. Wnt proteins function in a range of critical developmental processes in both vertebrates and invertebrates and are implicated in regulation of cell growth and differentiation in certain adult mammalian tissues, including the mammary gland. We have isolated a number of WNT sequences from human genomic DNA, two of which, designated WNT14 and WNT15, represent novel members of theWntgene family. We also isolated WNT sequences from human mammary cDNA and present evidence that WNT13 is expressed in human breast tissue, in addition to those previously described. WNT14 and WNT15 appear to have originated from an ancestral branch of theWntgene family that also includes theWnt9sequences found in jawless and cartilaginous fishes. AWnt14cDNA was also isolated from chicken and a partialWnt15sequence from mouse. We show that human WNT14 maps to chromosome 1 and that WNT15 maps distal to BRCA1 on chromosome 17q21, where it lies within 125 kb of another WNT family member, WNT3.  相似文献   

20.
The Wnt family of proteins is a group of extracellular signalling molecules that regulate cell-fate decisions in developing and adult tissues. It is presumed that all 19 mammalian Wnt family members contain two types of post-translational modification: the covalent attachment of fatty acids at two distinct positions, and the N-glycosylation of multiple asparagines. We examined how these modifications contribute to the secretion, extracellular movement and signalling activity of mouse Wnt1 and Wnt3a ligands. We revealed that O-linked acylation of serine is required for the subsequent S-palmitoylation of cysteine. As such, mutant proteins that lack the crucial serine residue are not lipidated. Interestingly, although double-acylation of Wnt1 was indispensable for signalling in mammalian cells, in Xenopus embryos the S-palmitoyl-deficient form retained the signalling activity. In the case of Wnt3a, the functional duality of the attached acyls was less prominent, since the ligand lacking S-linked palmitate was still capable of signalling in various cellular contexts. Finally, we show that the signalling competency of both Wnt1 and Wnt3a is related to their ability to associate with the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号