首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Radiolabelled glutamine and glucose were infused into lateral ventricles of rats in order to label transmitter amino acid pools in vivo . Brain regions close to the lateral ventricle (hippocampus, corpus striatum, hypothalamus) were labelled more effectively than more distant structures such as cerebral cortex or cerebellum. All regions were labelled to much the same extent over 30-150 min by [U-14C]glucose, [U-14C]glutamine, or [3H]glutamine administered alone or together in doublelabel experiments when allowance was made for any differences in precursor specific radioactivities. Slices of cerebral cortex or hippocampus from brains labelled in vivo were incubated and stimulated in vitro with veratrine (75 μ M ); tetrodotoxin (1 μ M ) was present in the control medium. Single-label experiments showed that [U-14C]- glutamine was more effective than [U-14C]glucose for labelling releasable glutamate and GABA. Double-label experiments showed that [3H]glutamine and [U-14C]- glucose given together in vivo labelled glutamate and GABA releasable in vitro to a similar extent. Both types of experiment empbasise the large contribution made by glutamine in vivo to pools of transmitter glutamate and GABA.  相似文献   

2.
ALANINE METABOLISM IN RAT CORTEX IN VITRO   总被引:1,自引:0,他引:1  
Abstract— (1) The metabolism of [U-14C]alanine was followed in slices of rat cerebral cortex and its interaction with glucose, pyruvate and the metabolic inhibitors fluoracetate and malonate was studied.
(2) Alanine did not stimulate respiration above endogenous levels or affect the rate of oxygen uptake with glucose or pyruvate as cosubstrate. Radioactivity found in CO2 from labelled alanine was only 6 per cent of that from labelled pyruvate. Lactate was not formed from alanine.
(3) After 2 h incubation with [U-14C]alanine the specific activities of glutamate, glutamine and GABA were 20–30 per cent that of alanine. All these specific activities except glutamate were lowered by addition of glucose, but with pyruvate as cosubstrate the specific activity of glutamate was increased by 87 per cent above the level with alanine alone.
(4) The effect of alanine as cosubstrate with [U-14C]pyruvate was to reduce the specific activity of GABA and of glutamine, but not glutamate or lactate; thus there was not an equal dilution of all the metabolites of pyruvate.
(5) Fluoracetate diminished respiration and the production of CO2 from [U-14C]-alanine only slightly; the addition of malonate as well practically abolished both. Fluoracetate lowered incorporation from alanine into all the amino acids, and radioactivity could not be detected in glutamine at all; addition of malonate lowered the specific activity of glutamate to 25 per cent but increased that into aspartate, GABA and glutamine.
(6) The interpretation of these data in terms of known pathways of alanine metabolism is discussed.  相似文献   

3.
Abstract— The distibution of 14C in the brains of rats that had been given [U-14C]glucose (10μCi/100g body wt.) at 10 min before death was followed for 20 min post mortem. The results indicated that the input of glucose-carbon into the tricarboxylic acid cycle stopped instantaneously after death. Although the proportion (more than 40 per cent) of tissue-14C combined in the amino acids associated with the cycle did not change significantly, there was a characteristic redistribution of 14C within the amino acid fraction after death: significantly, the 14C content of glutamate decreased andthat of GABA increased. The GABA/glutamate specific radioactivity ratio which in vivo was 0-58, increased progressively in the first 5 min after death, reaching a value of 0-93. However, by 5 min the rise in the ratio stopped abruptly, although GABA accumulation continued at about half the initial rate beyond that time. These results indicated that GA BA formation is compartmented in the brain andpermitted the evaluation of certain kinetic parameters of the two compartments which could be distinguished under the experimental conditions. One of the compartments was evidently a summation of a number of subcompartments which had certain features in common, such as a low GABA flux relative to the amount of glutamate. The properties of the other compartment were compatible with those of nerve terminals functioning with GABA as the transmitter. This compartment contained about 2 per cent of the total glutamate, but the glutamate pool was labelled about three times more than the average. Further, this compartment accounted for about 50 per cent of the total GABA formation flux andcontained GABA in high concentrations (the probable values were about seven times the mean).  相似文献   

4.
METABOLISM OF d-[U-14C]RIBOSE IN RAT TISSUES   总被引:1,自引:0,他引:1  
Abstract— d -[U-14C]Ribose injected subcutaneously into the rat enters the blood, liver and brain. At 30 min after injection 40-70 per cent of the radioactivity in the brain was found in amino acids and only 2-6 per cent in free sugars. In contrast, free sugars (mainly glucose) and carboxylic acids accounted for most of the radioactivity in liver and blood. Evidence for the entry of [U-14C]ribose into the brain was obtained by intracarotid or intravenous injection of [U-14C]ribose after interrupting the blood supply to the liver and kidney. Under these conditions the radioactivity in the brain was found in amino acids, carboxylic acids and ribose; no significant amount of [14C]glucose was detected in brain or heart. It is concluded that ribose is metabolized directly in vivo in the brain. d -[U-14C]Ribose was metabolized also by brain slices in vitro to form 14C-labelled amino acids and carboxylic acids; the rate was equivalent to the utilization of 0.65 μ mol of ribose/g/h. The specific radioactivity of glutamine and of γ -aminobutyrate was similar to or higher than that of glutamate in the brain. These results are discussed in the context of metabolic compartments.  相似文献   

5.
Abstract: The K+-induced release of amino acids and dopamine from synaptosomes of basal ganglia and substantia nigra of sheep was studied. K+ (56 mM) caused an increase in the release of GABA from caudate, putamen, globus pallidus, and substantia nigra, the increased release being 227, 171, 198, and 366%, respectively, compared with samples incubated without stimulation. The release of glutamate was also increased by 56 mM-K+ (136–183%) from all regions except the globus pallidus, and a significant release of aspartate was only seen in response to K+ stimulation of synaptosomes from putamen (50%). Veratrine (75 μM) also stimulated a similar pattern of amino acid release from these regions. Regional correlation was shown between the presence of an uptake system for an amino acid and its evoked release. [14C]Dopamine formed from L-[U-14C]tyrosine was released only from caudate and putamen synaptosomes by K+ stimulation, the increases being 105% and 74%, respectively. Synthesis of [14C]dopamine from L-[U-14C]tyrosine occurred only in synaptosomes prepared from these two regions and was not detected in synaptosomes from substantia nigra or globus pallidus although whole-tissue homogenates of substantia nigra were able to synthesise dopamine.  相似文献   

6.
Abstract— —The site of origin of transmitter amino acids released by depolarizing agents from nerve endings was studied. The model used was the incubated and depolarized synaptosome preparation from which the component soluble, synaptic vesicle, membrane and mitochondrial sub-fractions were obtained. Synaptosomal amino acids were radioactively labelled from D-[U-14C]glucose in vivo by intraventricular injection and in vitro during subsequent incubation. The specific radioactivities of amino acids released in response to K+ (56 mM) or veratrine (75 μM) were found to closely resemble those of the soluble cytoplasmic fraction, in most cases differing significantly from those of the other fractions. The specific radioactivity of the GABA and aspartate released by K+ stimulation and the GABA and glutamate released by veratrine were significantly different from that of the vesicles in each case. The specific radioactivities of glutamate released by both agents, and also GABA with K+ stimulation, were approximately double that of the amino acid released in control conditions. Depletion of the soluble cytoplasmic pools of glutamate, GABA and aspartate occurred following stimulation, corresponding to the induced-release of these compounds. Turnover of the amino acids in the other subfractions was too low to account for their participation in the release process in addition to the soluble cytoplasmic pool. A cytoplasmic origin of release of neurotransmitter amino acids from nerve endings is proposed.  相似文献   

7.
The levels of putrescine (Put), spermidine (Spd) and spermine (Spm) were analyzed in naturally collected samples of the marine macroalgae Dyctiota dichotoma, Gelidium canariensis and Grateloupia doryphora . Polyamines (PAs) appeared in free (35–134 μg g−1 fresh weight) and bound TCA-insoluble form (1 667–2 624 μg g−1 fresh weight). Axenic in vitro cultures of sporelings from G. doryphora were established in the medium containing glycerol. This medium promoted growth and morphogenesis and also increased the free and bound PA levels in the sporelings. Tracer experiments using 70 kBq [U-14C]-glycerol showed significant quantities of radioactivity in Put, Spd and Spm after 20 h of incubation. The effects of glycerol on growth were inhibited by the ornithine decarboxylase (EC 4.1.1.17) inhibitor α -difluoromethylornithine (DFMO). The presence of DFMO in the incubation medium with [U-14C]-glycerol also reduced the radioactivity in PAs.  相似文献   

8.
Abstract— The characteristics of the uptake of l -[U-14C] glutamate into rat dorsal sensory ganglia were investigated. The uptake was mediated by two distinct kinetic systems, with apparent Km values of the order of 10−3 M (low affinity) and 10−5 m (high affinity). The high affinity uptake system was strongly dependent upon temperature and sodium ion concn, and was depressed by a number of metabolic inhibitors. Following uptake, [14C] glutamate was extensively metabolized, primarily to glutamine, although this was not so with cultured ganglia, where in addition to an increased uptake of [14C] glutamate, the specific radioactivity of glutamate was increased and that of glutamine decreased. The labelled substrates [U-14C]pyruvate and [U-14C] acetate were used to investigate this phenomenon and the results are discussed in relation to current knowledge of metabolic compartmentation in nervous tissue.  相似文献   

9.
Abstract— The incorporation of 14C into amino acids of the brain was determined at different times after injection of [U-14C]glucose and [U-14C]ribose to rats maintained on thiamine-supplemented and thiamine-deficient diets for 22 days.
The 14C-content of amino acids in the brain of thiamine-deficient rats decreased at times 2–10 min after injection of [U-14C]glucose. but it increased at 2 min and decreased at times 5–10 min after injection of [U-14C]ribose.
The results of labelling of amino acids indicated that the activities in vivo of the thiamine pyrophosphate requiring enzymes, pyruvate oxidase, a-oxoglutarate dehydrogenase and transketolase were similar in the two groups. It was suggested that the observed decrease in the labelling of amino acids was due to one or more of the following factors: (i) a decrease in the activities of glycolytic enzymes catalysing the conversion of glucose into triose phosphate; (ii) a decrease in the transport of substrate to the active site of the enzymes; or (iii) altered neurohistopathology of the brain.
Thiamine deficiency in rats showed a 5% decrease in glutamate ( P < 0–05), 46% decrease in threonine (P < 0001) and 16% increase in glycine ( P < 0–01) content of the brain.  相似文献   

10.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

11.
Abstract— Mammalian cortical synaptosomes incubated in the presence of glucose (2.5 MM) plus glutamine (0.5 mM) showed a 30% increase in transmitter amino acid content over controls with glucose alone and a doubling of glutamate release induced by Veratrine or high K+. Double-label experiments, i.e. [U-14C]glucose with [3H]glutamine, and single-label experiments, i.e. [U-14C]glucose or [U-14C]-glutamine showed that stimulus-released glutamate was derived principally (80%) from glutamine. Released glutamine-derived glutamate was of higher (x 2) specific radioactivity than its tissue equivalent. Glutamine alone (0.5–0.75 mM) was much less effective than equivalent amounts of glucose alone, in stimulating respiration and maintaining tissue K+ levels.  相似文献   

12.
Abstract: In a previous study, it was demonstrated that enzyme-mediated γ-aminobutyric acid (GABA) synthesis occurs in the vestibule of the chick inner ear. As deeper knowledge of the properties of its synthesizing enzyme might contribute to the understanding of the role of GABA in inner ear function, some characteristics of glutamate decarboxylase (GAD) were studied in chick isolated ampullary cristae under conditions in which 14CO2 release from [1-14C]glutamate and [14C]GABA formation from [U-14C]glutamate for estimating GAD activity were equal. It was found that K m for glutamate is 5 m M and that the enzyme pH optimum is 7.3. These values fall within the range described for the corresponding enzyme in nervous tissue of other species. Pyridoxal phosphate (PLP) activates the enzyme and aminooxyacetic acid inhibits it, the same as these agents activate or inhibit GAD from several nervous tissue sources. 2-Mercaptoethanol shows some protection from inactivation of the PLP-de-pendent enzyme and Triton X-100 exerts some inhibition of vestibular GAD activity, as previously shown in other nervous tissue preparations. Although its cellular localization is at present uncertain, these results indicate that GAD of chick vestibular tissue possesses properties resembling those of the brain enzyme and might be controlled in a manner similar to that of GAD in brain, thus possibly participating in the regulation of inner ear function.  相似文献   

13.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

14.
Abstract— The metabolism of [U-14C]glutamate was followed in vivo in the octopus Eledone cirrhosa following intracranial injection, and compared with that in the mammalian brain.
By contrast with the rat brain, the specific activity of glutamine recovered from Eledone optic and vertical lobes was lower than that of glutamate at short time intervals after injection. Thus the Waelsch effect was not apparent in this species. Again, in contrast with the rat brain, radioactivity could be found in alanine but not in GABA following [U-14C]glutamate injection. This was compatible with observations made previously in vitro.
The significance of these intraspecies differences in metabolism and compartmentation is discussed.  相似文献   

15.
Abstract: N -Pivaloyl-leucyl–γ-aminobutyric acid (PLG) is a synthetic dipeptide with a partition coefficient of 1.67 in an ethyl acetate/water system that partially inhibits the synaptosomal uptake and activates the release of [U- 14C]-γ-aminobutyric acid ([U-14C]GABA). The displacement of GAB A from crude synaptic membranes by PLG occurs with an IC50 of 10−5 M . The compound has the capacity to cross the blood-brain barrier and increase central GABA levels. Its ED50 on cardiazol-induced convulsions is 60-65 mg/kg. PLG is resistant to hydrolysis by chymotrypsin and partially inhibits the proteolytic activity of trypsin.  相似文献   

16.
Abstract— The distribution of the neuroactive amino acids taurine, GABA, glycine, glutamate and aspartate, together with glutamine, have been studied in the rat retina. Peak levels of taurine were found in photoreceptor cells and of GABA and glycine in a retinal fraction enriched in amacrine cells and, synaptic terminals. In vitro , GABA formation from [3H]glutamine and [14C]glucose was also most prominent in this fraction; at 500 μ m [3H]glutamine was the better precursor.
Observations on metabolism in the photoreceptor cell layer of the tissue suggest an active turnover of glutamate, aspartate and GABA, and show that glutamine may serve as an alternative substrate to glucose here, perhaps via the GABA bypath.  相似文献   

17.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

18.
Previous studies have shown that rainbow trout fed on diets containing whole protein have superior growth rates compared to fish fed on diets of similar amino acid composition but containing a high proportion of free amino acids. The influence of several nutritional factors on the uptake of radioactivity from food pellets containing either [U-I4C] protein or [U-14C] amino acids into the systemic blood of trout has been investigated. The time taken for radioactivity in the free amino acid fraction of blood to reach a peak after a meal containing [U-14C] protein had been given was much shorter, and the level of radioactivity in the blood higher, in trout with almost empty stomachs than in fish with almost full stomachs; uptake of radioactivity into blood amino acids was also more rapid and reached much higher concentrations when pellets containing [U-14C] amino acids were fed than when [U-14C] protein was fed. Incorporation of radioactivity into blood protein continued for a much longer period and reached higher levels when a pellet containing [U-14C] protein was fed than when a pellet containing [U-14C] amino acids was fed. Previous dietary history (low or high protein intake) did not appear to affect the rate of absorption of amino acids from either protein or free amino acid pellets. The uptake rates from pellets containing free amino acids could be slowed by mixing the dietary amino acids with albumin. The distribution, postabsorption, of radioactivity in the different fractions of blood and liver suggested that incorporation of carbon residues into glycogen and lipid from an amino acid diet was greater than from a protein diet. The converse was true of incorporation of radioactivity into tissue protein.  相似文献   

19.
Abstract— The metabolic properties of synaptosome beds (deposits positioned between nylon gauzes) were studied. They respired, glycolysed, produced ATP and phosphocreatine, and metabolized [U-14C]glucose to glutamate, aspartate, alanine and GABA at similar rates to synaptosome suspensions. Metabolic inhibitors caused massive loss of amino acids from the beds. Synaptosome beds also responded metabolically to electrical pulses; respiration and lactate production increasing by 40 per cent. Differential release of glutamate, aspartate and GABA occurred during electrical stimulation, maximum release being after 10–15 min of stimulation. This differential release also occurred when medium potassium was increased. Omitting and chelating calcium reduced or abolished this response with both forms of stimulation. Including amino acid analogues (β-aminobutyric acid, α, γ-diaminobutyric acid and N -acetyl glutamic acid) in the incubation medium changed the patterns of amino acids present in the medium, indicating that under normal conditions active amino acid uptake processes are occurring in synaptosomes. Tetrodotoxin and ouabain also interfered with amino acid release without greatly affecting the response to stimulation. Cerebral cortex slices incubated between gauzes also showed a glycolytic response to electrical stimulation. GABA was the only amino acid showing a significant increase in the amount released with both potassium and electrical stimulation of the slices.  相似文献   

20.
Abstract: We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-13C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 ± 1.6 and 5.1 ± 0.2%, respectively (mean ± SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-13C]glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by γ-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with γ-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号