首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A large cellulosomal gene cluster was identified in the recently sequenced genome of Clostridium acetobutylicum ATCC 824. Sequence analysis revealed that this cluster contains the genes for the scaffolding protein CipA, the processive endocellulase Cel48A, several endoglucanases of families 5 and 9, the mannanase Man5G, and a hydrophobic protein, OrfXp. Surprisingly, genetic organization of this large cluster is very similar to that of Clostridium cellulolyticum, the model of mesophilic clostridial cellulosomes. As C. acetobutylicum is unable to grow on cellulosic substrates, the existence of a cellulosomal gene cluster in the genome raises questions about its expression, function and evolution. Biochemical evidence for the expression of a cellulosomal protein complex was investigated. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal sequencing and Western blotting with antibodies against specific components of the C. cellulolyticum cellulosome suggest that at least four major cellulosomal proteins are present. In addition, despite the fact that no cellulolytic activities were detected, we report here the evidence for the production of a high molecular mass cellulosomal complex in C. acetobutylicum.  相似文献   

2.
Cellulosomes are multienzyme complexes responsible for efficient degradation of plant cell wall polysaccharides. The nonenzymatic scaffoldin subunit provides a platform for cellulolytic enzyme binding that enhances the overall activity of the bound enzymes. Understanding the unique quaternary structural elements responsible for the enzymatic synergy of the cellulosome is hindered by the large size and inherent flexibility of these multiprotein complexes. Herein, we have used x-ray crystallography and small angle x-ray scattering to structurally characterize a ternary protein complex from the Clostridium thermocellum cellulosome that comprises a C-terminal trimodular fragment of the CipA scaffoldin bound to the SdbA type II cohesin module and the type I dockerin module from the Cel9D glycoside hydrolase. This complex represents the largest fragment of the cellulosome solved by x-ray crystallography to date and reveals two rigid domains formed by the type I cohesin·dockerin complex and by the X module-type II cohesin·dockerin complex, which are separated by a 13-residue linker in an extended conformation. The type I dockerin modules of the four structural models found in the asymmetric unit are in an alternate orientation to that previously observed that provides further direct support for the dual mode of binding. Conserved intermolecular contacts between symmetry-related complexes were also observed and may play a role in higher order cellulosome structure. SAXS analysis of the ternary complex revealed that the 13-residue intermodular linker of the scaffoldin subunit is highly dynamic in solution. These studies provide fundamental insights into modular positioning, linker flexibility, and higher order organization of the cellulosome.  相似文献   

3.
The 3' region of a gene designated cipB, which shows strong homology with cipA that encodes the cellulosome SL subunit of Clostridium thermocellum ATCC 27405, was isolated from a gene library of C. thermocellum strain YS. The truncated S1 protein encoded by the cipB derivative bound tightly to cellulose. The cellulose-binding domain in this polypeptide consisted of a C-terminal proximal 167 residue sequence which showed complete identity with residues 337-503 of mature SL from C. thermocellum strain ATCC 27405. The cellulose-binding domain interacted with both crystalline and amorphous cellulose, but not with xylan.  相似文献   

4.
Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes.  相似文献   

5.
Clostridium cellulolyticum is a model mesophilic anaerobic bacterium that efficiently degrades plant cell walls. The recent genome release offers the opportunity to analyse its complete degradation system. A total of 148 putative carbohydrate‐active enzymes were identified, and their modular structures and activities were predicted. Among them, 62 dockerin‐containing proteins bear catalytic modules from numerous carbohydrate‐active enzymes' families and whose diversity reflects the chemical and structural complexity of the plant carbohydrate. The composition of the cellulosomes produced by C. cellulolyticum upon growth on different substrates (cellulose, xylan, and wheat straw) was investigated by LC MS/MS. The majority of the proteins encoded by the cip‐cel operon, essential for cellulose degradation, were detected in all cellulosome preparations. In the presence of wheat straw, the natural and most complex of the substrates studied, additional proteins predicted to be involved in hemicellulose degradation were produced. A 32‐kb gene cluster encodes the majority of these proteins, all harbouring carbohydrate‐binding module 6 or carbohydrate‐binding module 22 xylan‐binding modules along dockerins. This newly identified xyl‐doc gene cluster, specialised in hemicellulose degradation, comes in addition of the cip‐cel operon for plant cell wall degradation. Hydrolysis efficiencies determined on the different substrates corroborates the finding that cellulosome composition is adapted to the growth substrate.  相似文献   

6.
一株富含碳水化合物微藻的筛选和分子鉴定   总被引:1,自引:0,他引:1  
微藻生长快,单位体积碳水化合物产率高,是发酵生产生物乙醇的理想原料。本研究采用通气培养系统,对初筛得到的10株微藻进行分批培养,以单位体积碳水化合物产率为主要指标,筛选富含碳水化合物的优良藻种。研究结果显示:10株微藻的生物质干重、可溶性糖含量、碳水化合物含量和碳水化合物产率变化范围分别在0.922~1.965 g/L、4.42%~19.23%、26.8%~60.9% 和36.17~149.67 mg·L-1·d-1之间,其中藻株GZ-57的碳水化合物产率和可溶糖含量最高,分别为149.67 mg·L-1·d-1 和19.23%,表明藻株GZ-57是一株具有培养潜力的高产碳水化合物微藻。进一步对其进行形态特征及基于18S rDNA、ITS序列的分子系统学分析,发现藻株GZ-57与栅藻科(Scenedesmaceae)链带藻属(Desmodesmus)的极大链带藻(Desmodesmus maximus)亲缘关系较近,因此将其鉴定为极大链带藻(Desmodesmus maximus)。  相似文献   

7.
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.  相似文献   

8.
《Process Biochemistry》2014,49(8):1266-1273
Biological processes for the degradation of intractable materials are still not considered to be practical due to the slow rates of enzymatic degradation. Cellulosomes are complexed enzyme systems with great degradative potential and one of the strategies for overcoming this problem. In this study, the laccase CueO from Escherichia coli was fused to the dockerin domain of a cellulosome system and further assembled with the scaffoldin miniCbpA, forming a laccase–miniCbpA complex. Compared to the individual subunits, laccase–miniCbpA complex caused a noticeable 2.1-fold increase in enzyme activity levels and enhanced degradation of various synthetic dyes, showing an increase of approximately 1.6-fold. Also, pretreated barley straw by laccase complexes was efficiently converted to bioethanol using a cellulase producing Saccharomyces cerevisiae strain. The laccase complexes caused a 2.6-fold increase in the amount of reduced sugar with an insoluble substrate in conditions with an identical amount of enzymes. The cellulolytic yeast with the aid of laccase complexes produced 2.34 g/L ethanol after 72 h, indicating an increase of approximately 2.1-fold compared to fermentation without the laccase complexes. This demonstrates the feasibility of developing an efficient laccase complex based on the cellulosome and this strategy may be used to degrade recalcitrant materials.  相似文献   

9.
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology.  相似文献   

10.
A novel gene (Ba-ega) of Bacillus sp. AC-1, encoding an endoglucanase (Ba-EGA), was cloned and expressed in Escherichia coli. Ba-ega, containing a 1,980-bp open reading frame (ORF), encoded a protein of 659 amino acids and had a molecular mass of 74.87 kDa. Ba-EGA was a modular enzyme composed of a family-9 glycosyl hydrolase catalytic module (CM9) and a family-3 carbohydrate-binding module (CBM3). To investigate the functions of the CBM3 and CM9, a number of truncated derivatives of Ba-EGA were constructed, and all were active. The catalytic module (rCM9) alone was less stable at high temperature than the recombinant Ba-EGA (rBa-EGA). The temperature stability for the complex of rCM9 and rCBM3 was still lower than rBa-EGA, but higher than rCM9 alone. These observations indicated the existence of a non-covalent interaction between CM9 and CBM3 that might strengthen the stability of CM9. However, this interaction is not strong enough to mimic the protective effect of the CBM in the wild-type enzyme.  相似文献   

11.
The cellulosome is a membrane-bound, extracellular multi-subunit complex responsible for the degradation of crystalline cellulose by a number of organisms including anaerobic bacteria and fungi. The hydrophilic X-module (CipA-X) from the modular scaffoldin subunit of Clostridium thermocellum cellulosome has been proposed to play various roles in cellulosomal function, including thermal and structural stability. Towards elucidating the function of CipA-X using structural and biophysical studies, the region comprising residues 1692-1785 from the C. thermocellum CipA cDNA encoding CipA-X was cloned into a pET21b expression vector. When expressed in Escherichia coli, the C-terminal His-tagged protein accumulated in the insoluble fraction. Cell fractionation experiments showed that the recombinant protein was localized to inclusion bodies. Refolding and purification involved denaturation of the whole cell lysate by addition of urea, followed by a nickel-Sepharose chromatography step and dialysis into native conditions (25 mM Tris-HCl, pH 7.4, 50 mM NaCl, and 10 mM EDTA). A final gel filtration step purified the protein to homogeneity, yielding 40 mg/L. The two-dimensional 1H-15N correlation spectrum of uniformly 15N-labelled CipA-X showed the characteristics of a well-folded protein comprising significant beta-structure, which is in agreement with the circular dichroism data.  相似文献   

12.
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm.  相似文献   

13.
A novel approach to the analysis of an equilibrium two-step peptide-protein binding is developed and applied to the experimental data. The first step of the process is the release of an endogenous peptide from a binding groove and the second is the binding of an added peptide. The method developed enables us to determine consequently the maximum protein occupancy level (protein-binding capacity), the dissociation constant of an endogenous peptide, and the dissociation constant of a binding (antigenic) peptide. It is shown and confirmed by experimental data that the value of an equilibrium dissociation constant of a binding peptide could be much less than the experimental value of ED(50) (concentration of added peptide required to bind half of the protein), but not equal to that commonly assumed for major histocompatibility complex (MHC)-peptide binding. The model considered gives a clear understanding of why some peptides may be good binders to MHC protein in vitro, but do not exhibit anticipated activity on the cellular level and vice versa.  相似文献   

14.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

15.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

16.
The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein–probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods.  相似文献   

17.
A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society. Of special interest are anaerobic fungi like the Neocallimastigomycota, which were recently found to harbor the largest diversity of biomass-degrading enzymes among the fungal kingdom. Enzymes sourced from these basal fungi have been used to metabolically engineer substrate utilization in yeast, and may offer new paths to lignin breakdown and tunneled biocatalysis. We also contrast classic enzymology approaches with emerging ‘omics’-based tools to decipher function within novel fungal isolates and identify new promising enzymes. Recent developments in genome editing are expected to accelerate discovery and metabolic engineering within these systems, yet are still limited by a lack of high-resolution genomes, gene regulatory regions, and even appropriate culture conditions. Finally, we present new opportunities to harness the biomass-degrading potential of undercharacterized fungi via heterologous expression and engineered microbial consortia.  相似文献   

18.
Rigden DJ 《FEBS letters》2005,579(25):5466-5472
Glycoside hydrolases (GHs) are diverse enzymes of biotechnological and medical importance. Bioinformatics contributes to our understanding of GH structure and function in various ways, including dissection of their typically modular structures and detection of the distant evolutionary relationships between families that often allow for prediction of catalytic sites. Here these twin strands are applied to the recently described GH98 family, the founder member of which is a blood group glycotope-cleaving endo-beta-galactosidase of potential medical importance from Clostridium perfringens. Three domains can be discerned including a central catalytic TIM barrel domain in which putative catalytic residues can be assigned. Distant homologies and domain contexts suggest that the N-terminal domain is a novel carbohydrate binding module.  相似文献   

19.
Enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. Although nitrilases from several sources have been characterized, there exists a scope for identifying broad spectrum nitrilases exhibiting higher substrate tolerance and better thermostability to develop industrially relevant biocatalytic processes. Through genome mining, we have identified nine novel nitrilase sequences from bacteria and evaluated their activity on a broad spectrum of 23 industrially relevant nitrile substrates. Nitrilases from Zobellia galactanivorans, Achromobacter insolitus and Cupriavidus necator were highly active on varying classes of nitriles and applied as whole cell biocatalysts in lab scale processes. Z. galactanivorans nitrilase could convert 4-cyanopyridine to achieve yields of 1.79 M isonicotinic acid within 3 h via fed-batch substrate addition. The nitrilase from A. insolitus could hydrolyze 630 mM iminodiacetonitrile at a fast rate, effecting 86 % conversion to iminodiacetic acid within 1 h. The arylaliphatic nitrilase from C. necator catalysed enantioselective hydrolysis of 740 mM mandelonitrile to (R)-mandelic acid in 4 h. Significantly high product yields suggest that these enzymes would be promising additions to the suite of nitrilases for upscale biocatalytic application.  相似文献   

20.
Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, ?thus not reusable- and their performance under real operational conditions is uncertain.Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts.In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel “immobilized biocatalyst engineering” research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号