首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Grasses (Poaceae) pollen is a major cause for allergic diseases worldwide. Pollen monitoring in the atmosphere is of primary importance for symptoms interpretation and therapy planning. Microscopic pollen identification and counts do not allow the detection at species or genus level because of the stenopalynous nature of the family. Nevertheless, the assessment of the flowering phenology of different species would be important, because not all grass allergens are cross-reacting and allergic patients could be differentially sensitized. In this work, a phenological survey was carried out in five stations located on the urban territory of Perugia (Central Italy), from April to September 2015, recording the alternation between flowering phenophases of 19 grass species and estimating their contribution to the airborne pollen load of the area through the calculation of a Phenological Index. Moreover, pollen grains of the different species were collected and observed, confirming the impossibility to make a discrimination during microscope pollen counts. The prevailing grasses in terms of contribution to the pollen detection in the studied area resulted to be Dactylis glomerata and Lolium perenne during spring and early summer, and Cynodon dactylon during late summer. Data should be validated repeating the survey in successive years and possibly using biomolecular tools, but the obtained information could be relevant for diagnosis and treatment of grass pollen allergies.  相似文献   

2.
Grasses (Poaceae) are very common plants, which are widespread in all environments and urban areas. Despite their economical importance, they can represent a problem to humans due to their abundant production of allergenic pollen. Detailed information about the pollen season for these species is needed in order to plan adequate therapies and to warn allergic people about the risks they take in certain areas at certain moments. Moreover, precise identification of the causative species and their allergens is necessary when the patient is treated with allergen‐specific immunotherapy. The intrafamily morphological similarity of grass pollen grains makes it impossible to distinguish which particular species is present in the atmosphere at a given moment. This study aimed at developing new biomolecular tools to analyze aerobiological samples and identifying major allergenic Poaceae taxa at subfamily or species level, exploiting fast real‐time PCR. Protocols were tested for DNA extraction from pollen sampled with volumetric and gravimetric methods. A fragment of the matK plastidial gene was amplified and sequenced in Poaceae species known to have high allergological impact. Species‐ and subfamily‐specific primer–probe systems were designed and tested in fast real‐time PCRs to evaluate the presence of these taxa in aerobiological pollen samples. Species‐specific systems were obtained for four of five studied species. A primer–probe set was also proposed for the detection of Pooideae (a grass subfamily that includes also major cereal grains) in aerobiological samples, as this subfamily includes species carrying both grass allergens from groups 1 and 5. These, among the 11 groups in which grass pollen allergens are classified, are considered responsible for the most frequent and severe symptoms.  相似文献   

3.
In this study, the seasonally averaged intradiurnal patterns of four different pollen types (Fraxinus, Betula, Poaceae and Artemisia) and the role of traffic volume, air pollution and selected weather parameters were investigated. Measurements were carried out with a 7-day recording volumetric spore trap (Hirst type) near a congested city motorway (the A 100) in Berlin, Germany, in 2012, 2013 and partly 2011. Both Poaceae and Artemisia pollen showed distinct patterns which were similar across the years. The main period of grass pollen concentrations in the air was from 8 a.m. to 10 p.m. with peaks about midday or in the afternoon. Mugwort pollen mainly occurred between 6 a.m. and 2 p.m. with a clear maximum from 8 to 10 a.m. With regard to Fraxinus and Betula pollen, the patterns were not as clear and showed differences throughout the years. The intradiurnal patterns of traffic volume and pollen load, mainly of Poaceae in the afternoon and Artemisia in the morning, were partly coincident. The combination of both a high pollen count and air pollution, due to exhaust emissions, represents a special health threat which could result in a double burden for allergy sufferers. In the case of the daily means of Betula and Poaceae, relative humidity had a significantly negative effect on pollen concentrations on the same and/or next day/s, sunshine duration (Poaceae) and air temperature (Artemisia) a positive one.  相似文献   

4.
5.
Identifying critical shifts in ecosystems caused by human impacts has become a priority for understanding resilience to change and setting realistic landscape management goals. Previous work suggests that many British blanket peats have suffered a loss of functional integrity over recent centuries, but it is unclear whether all moorland habitats are equally vulnerable. This study examines the relative sensitivity of four contrasting moorland communities to historic land-use changes and assesses whether these management pressures are pushing some moorlands beyond their Holocene range of variability. Late Holocene dynamics in the Peak District, northern England, were investigated using high resolution pollen, fungal spore and charcoal data, and multivariate analyses. All sites show high Calluna values during the 19th century and converge on local Poaceae dominance during the 20th century. This involved a shift from gradual or cyclical variability and moderate changes in pollen abundance during preceding centuries, to rapid transitions between mono-dominant pollen assemblages and a functional shift to taxa with competitive traits; these are interpreted as a regime shift. Evidence for the recent recovery of dwarf shrubs and Sphagnum is strong at one site, with slight evidence from two others, but disturbance could push the system back to grass dominance. The deep blanket peat site may have crossed a threshold, leading to a persistent grass dominated state. Studying regime shifts on decadal to centennial scales can help bridge the gap between ecology and palaeoecology by providing a robust basis for assessing vulnerability, setting restoration priorities and managing novel peatland states.  相似文献   

6.
Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994–May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December–April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m–3 were recorded on 244 days and coincided with maximum temperatures of 28.1 ± 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearmans correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.  相似文献   

7.

Background

With the availability of rice and sorghum genome sequences and ongoing efforts to sequence genomes of other cereal and energy crops, the grass family (Poaceae) has become a model system for comparative genomics and for better understanding gene and genome evolution that underlies phenotypic and ecological divergence of plants. While the genomic resources have accumulated rapidly for almost all major lineages of grasses, bamboo remains the only large subfamily of Poaceae with little genomic information available in databases, which seriously hampers our ability to take a full advantage of the wealth of grass genomic data for effective comparative studies.

Results

Here we report the cloning and sequencing of 10,608 putative full length cDNAs (FL-cDNAs) primarily from Moso bamboo, Phyllostachys heterocycla cv. pubescens, a large woody bamboo with the highest ecological and economic values of all bamboos. This represents the third largest FL-cDNA collection to date of all plant species, and provides the first insight into the gene and genome structures of bamboos. We developed a Moso bamboo genomic resource database that so far contained the sequences of 10,608 putative FL-cDNAs and nearly 38,000 expressed sequence tags (ESTs) generated in this study.

Conclusion

Analysis of FL-cDNA sequences show that bamboo diverged from its close relatives such as rice, wheat, and barley through an adaptive radiation. A comparative analysis of the lignin biosynthesis pathway between bamboo and rice suggested that genes encoding caffeoyl-CoA O-methyltransferase may serve as targets for genetic manipulation of lignin content to reduce pollutants generated from bamboo pulping.  相似文献   

8.
Multi-proxy palaeoecological data from two peat profiles at Esklets on the North York Moors upland provide a record of vegetation changes for much of the Holocene. Possible vegetation disturbance in the late Mesolithic and activity in the Neolithic and Bronze Age are recognised. In both profiles fine resolution analyses have been applied to the period leading up to the mid-Holocene Elm Decline which in this upland has been dated to ca. 4,800 bp (uncalibrated 14C years). Disturbance impacts at the Esklets Elm Decline are low scale, but phases of woodland disturbance, which include cereal (Hordeum)-type pollen, occur in both profiles ca. 5,200 bp, some centuries before the Elm Decline on the North York Moors, but similar to dates for this key palynological horizon in nearby lowland areas. A protocol is presented for the separation of Hordeum (cultivated species) and Glyceria (wild grass) pollen. The Esklets sites record disturbances during the late Mesolithic-Neolithic transition. These pre-Elm Decline disturbance phases represent either early penetration of neolithic cultivator-pastoralists into this upland or the activities of final mesolithic foragers. No neolithic archaeological sites occur nearby, but a ‘Terminal Mesolithic’ flint site dominated by microlith ‘rod’ forms occurs close to the palaeoecological sites. Such rod sites are dated in northern England to the centuries leading up to 5,000 bp and so are contemporary with the disturbance phases that included Hordeum-type pollen at Esklets. The cultural context of these disturbance phases and the role of ‘rod’ microlith sites during the Mesolithic-Neolithic transition require further focused research to clarify all issues relating to this important period.  相似文献   

9.
Conventional wisdom states Cannabis sativa originated in Asia and its dispersal to Europe depended upon human transport. Various Neolithic or Bronze age groups have been named as pioneer cultivators. These theses were tested by examining fossil pollen studies (FPSs), obtained from the European Pollen Database. Many FPSs report Cannabis or Humulus (C/H) with collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies to differentiate C/H pollen, as follows: unknown C/H pollen that appeared in a pollen assemblage suggestive of steppe (Poaceae, Artemisia, Chenopodiaceae) we interpreted as wild-type Cannabis. C/H pollen in a mesophytic forest assemblage (Alnus, Salix, Populus) we interpreted as Humulus. C/H pollen curves that upsurged and appeared de novo alongside crop pollen grains we interpreted as cultivated hemp. FPSs were mapped and compared to the territories of archaeological cultures. We analysed 479 FPSs from the Holocene/Late Glacial, plus 36 FPSs from older strata. The results showed C/H pollen consistent with wild-type C. sativa in steppe and dry tundra landscapes throughout Europe during the early Holocene, Late Glacial, and previous glaciations. During the warm and wet Holocene Climactic Optimum, forests replaced steppe, and Humulus dominated. Cannabis retreated to steppe refugia. C/H pollen consistent with cultivated hemp first appeared in the Pontic-Caspian steppe refugium. GIS mapping linked cultivation with the Copper age Varna/Gumelni?a culture, and the Bronze age Yamnaya and Terramara cultures. An Iron age steppe culture, the Scythians, likely introduced hemp cultivation to Celtic and Proto-Slavic cultures.  相似文献   

10.
Phytogeographical studies of south-western Greenland suggest that Alnus crispa is not native to the far south of the island. Palynological investigations dating to the 1970s concluded that this was the case throughout the Holocene, with the regular occurrences of Alnus seen in pollen diagrams from this region explained as the result of long-distance transport of alder pollen from Canada. Recently, macrofossil evidence from an archaeological site in southern Greenland has emerged that indicates that alder was amongst the fuel resources available to the Norse settlers around AD 1000–1400. In light of this discovery, we present data from 13 pollen diagrams produced since 2008 to re-examine the past status of Alnus within southernmost Greenland over the last 1500 years. Only at one site with a very large pollen source area do Alnus pollen frequencies regularly exceed a threshold which may be interpreted as indicating a regional presence for the plant. This pattern is argued to be consistent with the presence of a small but variable regional population of the plant, perhaps restricted in its distribution to the inland district of Vatnahverfi.  相似文献   

11.
12.
Identification of pollen grains of cultivated plants is essential in archaeobotanical studies. In this study, we investigated the pollen morphology of 30 species which are representatives of most of the crop plants in southern China, using a light microscope. Our results show that the pollen grains of these species or genera can generally be identified by their size, aperture(s) and exine sculpture. We found that: (1) some cultivated cereals can be distinguished from wild species of Poaceae according to their size frequency combined with their morphological features; (2) the lengths of the equatorial diameter (E), polar axis (P) and the greatest dimension of the lumina (the size of the network sculpturing) of the exine reticulum may be diagnostic features to distinguish some brassicaceous vegetables. There are significant differences between the E and P values among Brassica campestris (B. rapa, oilseed rape, Chinese cabbage), B. alboglabra (B. oleracea var. alboglabra, gai lan, Chinese kale), B. parachinensis (B. rapa var. parachinensis, choy sum, Chinese flowering cabbage) and B. chinensis (B. rapa ssp. chinensis, pak choi), but moderate differences in the longer axis length of the reticulum lumina, which provide potential for identifying species on the basis of pollen grains. We compared the P values and the longer axis length of the lumina of modern specimens of Brassicaceae pollen grains with those of fossil pollen extracted from the Ming-Qing cultural layer in the Fuqikou site at Chongqing, China, and found that the fossil pollen grains of Brassicaceae probably represent vegetable plants related to B. parachinensis. Moreover, we measured the diameters of rice pollen grains from modern paddy fields to assess the pollen size frequency and found that the size range from ~?34 to 38 µm is closely associated with rice pollen in southern China, which can be used to detect pollen signals of human activities in archaeobotanical investigations.  相似文献   

13.
As a part of the ELSA-project (Eifel Laminated Sediment Archive) new pollen and plant macro-remain analyses have been carried out on a series of Holocene lacustrine sediments from three open maar lakes of the Quaternary Westeifel Volcanic Field. In combination with already existing pollen analyses, the archaeological record and written sources, the present study casts new light on settlement activities and henceforth the development of agriculture from the prehistoric to historic times in this region. While there are clues that wood pasturing was practised in the Eifel region from the Michelsberg Culture onwards (c. 4300 cal. b.c.), the Vulkaneifel is a remote area with relatively poor soils and a humid climate and was not constantly settled until the Late Neolithic/Early Bronze Age, when cereal pollen was found regularly in the deposits. Plant macro-remains (chaff), which give us direct evidence for arable agriculture in the surroundings of the maars, were also found in layers belonging to the Early Bronze Age (c. 1900 cal. b.c.). At the same time we can observe the massive spread of Fagus sylvatica (beech) in all pollen diagrams, which was most probably caused by a combination of climatic, anthropogenic and competitive factors. Later impacts of agriculture were an abundance of crop weeds and pollen in the following Middle Bronze Age. Nevertheless human impact remained discontinuous until the Urnfield Culture (1200–800 cal. b.c.). A layer of weeds dating at the end of the Urnfield Culture was found and also flax (Linum usitatissimum) cultivation first becomes apparent. However, the subsequent Iron Age and Roman Period reveal only crop weeds and cereal pollen in slightly higher concentrations, but the abundance of Poaceae pollen at this time is most probably consistent with grazing activities. There follows compelling evidence of the importance of flax cultivation and processing at the maars from the Merovingian Period (5th century a.d.) onwards. A detailed insight into the agriculture of the High Medieval comes from flash flood layers of the 14th century a.d., where remains of Secale cereale (rye) and crop weeds reflect winter-sown cultivation of rye. Cannabis sativa (hemp) was also cultivated and processed during the medieval. Finally we can trace the Prussian reforestation in the 19th century a.d., with an increase in Pinus sylvestris (pine) and Picea abies (fir), by both pollen and plant macro-remains.  相似文献   

14.
A preliminary study to compare Poaceae pollen data and to determine possible differences in pollen productivity and/or seasonality was performed at six locations in Catalonia (Spain): Barcelona, Bellaterra, Girona, Lleida, Manresa and Tarragona over a 6-year period (1996–2001). In the study area, Poaceae pollen grains are an important cause of respiratory allergies. Being present in the atmosphere all year round, the grass pollen concentrations are especially significant between May and August. The absolute peak occurs in June, except in Lleida where the peak comes earlier, possibly due to the early flowering of particular steppe species. Even if there are differences between different years, Girona and Lleida (inland locations) usually present the highest annual grass pollen index with, on average, 2177 pollen grains per year. Barcelona and Tarragona (the coastal sites) show the lowest levels, with around 1140 grass pollen grains per year. The respective local climates are very different, and pollen grains may originate in different grass species. A decreasing trend in the Poaceae annual pollen index was found over the period of the present study.  相似文献   

15.
16.
Pollen grains have been a major focus of research mostly in temperate regions due to their effects on human health, especially allergies and asthma. The current study investigates a subtropical region characterized by a Mediterranean climate where Sharav conditions are experienced during the spring and autumn. The aim of the current study was to investigate whether Sharav conditions impacted airborne pollen concentrations of allergenic Amaranthaceae, Poaceae, Morus, Pinus, and Quercus more than standard Warm days during the main pollen seasons in the years 2010–2014 in Tel Aviv and Jerusalem (Israel). Slight variation was observed between the main pollen seasons in Tel Aviv compared to Jerusalem resulting from differences in temperature and relative humidity percentages. Additionally, more Sharav conditions occurred in Jerusalem than in Tel Aviv during the study period. The highest pollen concentrations occurred during Sharav days for Amaranthaceae, Poaceae, and Pinus but not for Morus and Quercus. Therefore, individuals who are allergic to Amaranthaceae, Poaceae, and Pinus pollen, and exposed to high pollen concentrations during Sharav days, might suffer more allergy symptoms than on Warm days.  相似文献   

17.
The core of Lake Kremensko-5, one of the cirque lakes in the northern Pirin Mountains of southwestern Bulgaria, contains sediments from more than 13,500 years b.p. and a pollen stratigraphy that can be correlated with the interstadial/stadial cycle of the Late-glacial period. Artemisia and Chenopodiaceae predominate in the basal part of the sequence, indicating the presence of mountain steppe type vegetation soon after the ice retreat. A sharp increase of Pinus diploxylon-type and Poaceae after 12,360 b.p. is followed by a return of Artemisia and Chenopodiaceae, marking the Younger Dryas. Its abrupt termination must result from an unconformity, for high values of Quercetum mixtum, dated at other sites in the Pirin Mountains as early Holocene, are missing here, perhaps because of erosion at a time of low lake level related to the high insolation maximum during the early Holocene.  相似文献   

18.
Chrysoperla externa (Hagen) larvae prey on pest insects and mites in agroecosystems, and adults mainly feed on pollen, nectar, and honeydew. Therefore, preserving this lacewing in crop systems depends on having plants that provide these resources. The objectives of this research were to identify pollen grains ingested by Ch. externa adults collected in a diversified organic agroecosystem and to evaluate whether there is a difference in the amount of ingested pollen grains between males and females. The adults of Ch. externa were collected in four different crops during 13 months in Seropédica, state of Rio de Janeiro, Brazil, using a collecting net. The adults were killed and underwent acetolysis, in order to recover the pollen in the gut. A total of 37,441 pollen grains from 19 Angiospermae families were found, besides 16 Pteridophyte spores. Among the recognized pollen grains, those of Poaceae were the majority, both in frequency of occurrence (87.5%) and in quantity (33496), and were found and recovered in every month of collection. Females and males ingested, respectively, 71.9 and 28.1% of the total number of Angiospermae pollen grains consumed by both sexes. The highest number of Poaceae pollens was obtained from the females (72.1% of the total number of Poaceae pollen, recovered from females + males). Taken as a whole, this study showed that adults of Ch. externa find possibilities to maintain throughout the year, in different crops, but the main source of pollen to males and females was Poaceae plants.  相似文献   

19.

Background and Aims

Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species.

Methods

Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species.

Key Results

All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively.

Conclusions

The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species.  相似文献   

20.
Airborne concentrations of Poaceae pollen have been monitored in Poznań for more than 10 years and the length of the dataset is now considered sufficient for statistical analysis. The objective of this paper is to produce long-range forecasts that predict certain characteristics of the grass pollen season (such as the start, peak and end dates of the grass pollen season) as well as short-term forecasts that predict daily variations in grass pollen counts for the next day or next few days throughout the main grass pollen season. The method of forecasting was regression analysis. Correlation analysis was used to examine the relationship between grass pollen counts and the factors that affect its production, release and dispersal. The models were constructed with data from 1994 to 2004 and tested on data from 2005 and 2006. The forecast models predicted the start of the grass pollen season to within two days and achieved 61% and 70% accuracy on a scale of 1–4 when forecasting variations in daily average grass pollen counts in 2005 and 2006, respectively. This study has emphasised how important the weather during the few weeks or months preceding pollination is to grass pollen production, and draws attention to the importance of considering large-scale patterns of climate variability (indices of the North Atlantic Oscillation) when constructing forecast models for allergenic pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号