首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Joo SH  Pei D 《Biochemistry》2008,47(9):3061-3072
Preparation of support-bound combinatorial peptide libraries with free C-termini has been challenging in the past because solid-phase peptide synthesis usually starts from the C-terminus, which must be covalently attached to the solid support. In this work, we have developed a general methodology to synthesize and screen one-bead-one-compound peptide libraries containing free C-termini. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers, and peptides were synthesized on the beads in the conventional C --> N manner, with their C-termini attached to the support through an ester linkage on the bead surface but through an amide bond in the bead interior. The surface peptides were cyclized between their N-terminal amine and a carboxyl group installed at a C-terminal linker sequence, while the internal peptides were kept in the linear form. Base hydrolysis of the ester linkage in the cyclic peptides regenerated linear peptides that contained a free alpha-carboxyl group at their C-termini but remained covalently attached to the resin via the N-termini ("inverted" peptides). An inverted peptide library containing five random residues (theoretical diversity of 3.2 x 10 (6)) was synthesized and screened for binding to four postsynaptic density-95/discs large/zona occluden-1 (PDZ) domains of sodium-hydrogen exchanger regulatory factor-1 (NHERF1) and channel-interacting PDZ domain protein (CIPP). The identity of the binding peptides was determined by sequencing the linear encoding peptides inside the bead by partial Edman degradation/mass spectrometry. Consensus recognition motifs were identified for the PDZ domains, and representative peptides were resynthesized and confirmed for binding to their cognate PDZ domains. This method should be generally applicable to all PDZ domains as well as other protein domains and enzymes that recognize the C-terminus of their target proteins.  相似文献   

2.
1. Glucose oxidase (EC 1.1.3.4), amyloglucosidase (EC 3.2.1.3), invertase (EC 3.2.1.26) and beta-galactosidase (EC 3.2.1.23) were covalently attached via glutaraldehyde to the inside surface of nylon tube. 2. The linked enzyme system, comprising invertase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of sucrose. 3. The linked enzyme system, comprising beta-galactosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of lactose. 4. The linked enzyme system, comprising amyloglucosidase immobilized within a nylon tube acting in series with glucose oxidase immobilized in a similar way, was used for the automated determination of maltose. 5. Mixtures of glucose oxidase and amyloglucosidase were immobilized within the same piece of nylon tube and used for the automated determination of maltose. 6. Mixtures of glucose oxidase and invertase were immobilized within the same piece of nylon tube and used for the automated determination of sucrose.  相似文献   

3.
Enormous progress has been made in the development of antisense oligodeoxynucleotides (ODNs) as therapeutic agents inhibiting gene expression. Unfortunately, the therapeutical application of ODNs is still held back because of the low cellular uptake and the lack of specific transport into particular cells. In this paper, we report a drug-targeting system using somatostatin receptors (SSTRs) which are overexpressed in various tumors. Phosphorothioate ODNs were covalently linked to Tyr(3)-octreotate, an analogue of somatostatin. The peptide was assembled by solid-phase synthesis, oxidized to form the cyclic disulfide, and subsequently derivatized with a N-terminal maleimido functionality. 5'-Thiol derivatized phosphorothioate-ODNs directed against the protooncogene bcl-2 were conjugated to this maleimido-modified peptide. Binding studies revealed that the conjugates retain specific binding with nanomolar affinities to SSTRs (IC(50)-values between 1.83 and 2.52 nM). Furthermore, melting studies with complementary DNA revealed that the terminal conjugation of the ODNs did not significantly affect their hybridization affinity.  相似文献   

4.
6-Azathymidine, 6-aza-2'-deoxycytidine, 6-methyl-2'-deoxyuridine, and 5,6-dimethyl-2'-deoxyuridine nucleosides have been converted to phosphoramidite synthons and incorporated into oligodeoxynucleotides (ODNs). ODNs containing from 1 to 5 of these modified pyrimidines were compared with known 2'-deoxyuridine, 5-iodo-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, 5-fluoro-2'-deoxyuridine, 5-bromo-2'-deoxycytidine, and 5-methyl-2'-deoxycytidine nucleoside modifications. Stability in 10% heat inactivated fetal calf serum, binding affinities to RNA and DNA complements, and ability to support RNase H degradation of targeted RNA in DNA-RNA heteroduplexes were measured to determine structure-activity relationships. 6-Azathymidine capped ODNs show an enhanced stability in serum (7- to 12-fold increase over unmodified ODN) while maintaining hybridization properties similar to the unmodified ODNs. A 22-mer ODN having its eight thymine bases replaced by eight 6-azathymines or 5-bromouracils hybridized to a target RNA and did not inhibit RNase H mediated degradation.  相似文献   

5.
探讨了由核定位信号(NLS)多肽介导的核因子-κB(NF-κB)寡核苷酸诱骗子(ODNs decoy)进入HeLa细胞核的效率,以及对细胞核内NF-κB活性的调控作用。利用双功能交联剂(Sulfo-SMCC)共价交联末端氨基修饰的ODNs decoy和末端巯基修饰的NLS多肽,形成NLS多肽共价连接的ODNs decoy。依靠TransME转染试剂的辅助转染NLS-ODNs decoy进入HeLa细胞,用荧光显微镜观察荧光标记的NLS-ODNs在细胞内的分布。用MTT法检测HeLa细胞的活力,以凝胶迁移实验(EMSA)检测TNF-α诱导的HeLa细胞核抽提物中NF-κB的活性。结果表明,NLS多肽成功地连接到ODNs decoy上,NLS-ODNs可高效入核,入核率达到17.9%。转染NLS-ODNs进入HeLa细胞,对细胞活力无明显影响,而显著抑制核内NF-κB的活性。结果表明NLS多肽可提高ODNs decoy的入核效率,显著增强诱骗子对NF-κB活性的抑制效果。  相似文献   

6.
Characterization of DNA-N-glycosylase activities in cell extract is a challenging problem and could represent a major concern for medical applications. Synthetic oligonucleotides which contain base lesions located on specific sites constitute suitable substrates for their study. An in vitro miniaturized assay was developed that allows the measurement of cleavage activities of DNA repair enzymes on a set of oligonucleotides (ODNs) that contained different lesions. The modified ODNs were indirectly hybridized onto probes chemically fixed at defined sites on a circular format within each well of a 96-well microtiter plate (Oligo Sorbent Array, OLISA). The lesions were selected among oxidative damage (8-oxo-7,8-dihydroguanine, formylamine), deaminated bases (uracil, hypoxanthine) and alkylated base (N(6)-etheno-adenine). Cleavage specificity was checked using different enzymes: Fapy-DNA-N-glycosylase, 3-methyladenine DNA glycosylase II, uracil-N-glycosylase, endonuclease V and endonuclease VIII. The extent of excision could be monitored simultaneously for the selected base damage. For this purpose, we used automated fluorescence imaging analysis of the residual ODNs that contained lesions and remained on the support after release of the cleaved ODNs recognized by the repair enzymes. The results indicated that this assay could advantageously replace the analysis of glycosylase activities by PAGE techniques. Finally we show that this in vitro repair assay represents an interesting tool for the determination of cellular repair activities.  相似文献   

7.
The synthesis, hybridization properties and antisense activities of oligodeoxynucleotides (ODNs) containing 7-(1-propynyl)-7-deaza-2'-deoxyguanosine (pdG) and 7-(1-propynyl)-7-deaza-2'-deoxyadenosine (pdA) are described. The suitably protected nucleosides were synthesized and incorporated into ODNs. Thermal denaturation (Tm) of these ODNs hybridized to RNA demonstrates an increased stability relative to 7-unsubstituted deazapurine and unmodified ODN controls. Antisense inhibition by these ODNs was determined in a controlled microinjection assay and the results demonstrate that an ODN containing pdG is approximately 6 times more active than the unmodified ODN. 7-Propyne-7-deaza-2'-deoxyguanosine is a promising lead analog for the development of antisense ODNs with increased potency.  相似文献   

8.
In vitro binding of skeletal muscle myosin and the erythrocyte cytoskeleton linker protein, band 4.1, was evaluated in a novel small-volume, filtration-based binding assay. The assay equipment consisted of a plastic grid containing several buffer-filled wells into which were placed small nylon screens. Myosin was covalently tethered to an agarose (Sepharose) support and aliquots of this resin were pipetted onto the surface of the submerged nylon screen. Following addition of radiolabeled protein 4.1, and an appropriate incubation period, the myosin-Sepharose beads and bound protein 4.1 were separated by wicking the buffer from beneath the nylon screen with a piece of filter paper. Nylon screens, with adherent resin beads, and the filter paper wicks were then counted to give the amounts of bound and free protein 4.1, respectively. This system proved to be a rapid, simple, and quantitative method for evaluating the behavior of a myosin binding protein under conditions in which free myosin would be prone to assemble into filaments. Moreover, since the assay separates bound and free components within a few seconds, it is well suited for the analysis of low-affinity interactions.  相似文献   

9.
CpG oligodeoxynucleotides (ODNs) are promising immunomodulatory agents for treating human diseases and vaccine development. Phosphodiester CpG ODNs were demonstrated to have poor immunostimulatory potentials for cytokine production. However, the conjugation of consecutive deoxyriboguanosine residues, called a dG run, at the 3' terminus of phosphodiester CpG ODNs significantly enhanced TNF-alpha and IL-12 production from mouse splenic dendritic cells (DCs). The optimal induction of cytokine production was achieved by the addition of a hexameric dG (dG6) run. In contrast, the existence of a dG6 run either at the 5' terminus of phosphodiester CpG ODNs or at the 3' terminus of phosphorothioate CpG ODNs diminished CpG-mediated cytokine induction, suggesting that the effects of a dG run depend on its location and the chemical property of the ODN backbone, respectively. In addition, we provided the evidence that the conjugation of a dG6 run caused the structural transformation of CpG ODNs, which facilitates their targeting into mouse APCs such as splenic DCs, B cells, and peritoneal macrophages with a scavenger receptor type A ligand specificity. Among primary APCs, DCs were the most potent for CpG ODN-mediated IL-12 production. Furthermore, we demonstrated that the conjugation of a dG6 run into the 3' terminus of phosphodiester CpG ODNs was crucial for their ability to generate Th1 immunity in vivo. Thus, the conjugation of a dG6 run into phosphodiester CpG ODNs would be an alternative way to optimize their immunostimulatory potentials in vitro and in vivo.  相似文献   

10.
The interaction of Escherichia coli Fpg protein, which catalyzes excision of several damaged purine bases including 8-oxoguanine (oxoG) from DNA with a set of single- (ss) and double-stranded (ds) 23-mer oligodeoxyribonucleotides (ODNs) containing 8-oxoguanine(s) at various positions, has been investigated. The affinities of different ss ODNs (KM = 0.55-1.3 microM) were shown to be 12-170 times less than those for corresponding ds ODNs (KM = 6-60 nM). Depending on the position of the oxoG within the ODNs, relative initial rates of conversion of ss substrates may be less than, comparable, or greater than those for ds ODNs. The enzyme can remove 5'-terminal oxoG from ODNs only if the 5'-end is phosphorylated. Fpg does not release oxoG residues from the ultimate and penultimate 3'-terminal positions. Duplexes containing two adjacent oxoG are poor substrates for the glycosylase.  相似文献   

11.
To construct the nuclease-resistant oligodeoxynucleotides (ODNs) with natural phosphodiester linkages, we synthesized ODNs that contain 6'alpha-[N-(aminoalkyl)carbamoyloxy]-carbocyclic-thymidines (4, 5, and 6). The stability of these ODNs to nuclease hydrolysis was examined by using snake venom phosphodiesterase (3'-exonuclease) and nuclease S1 (endonuclease). It was found that the ODNs containing 4, 5, or 6 were more resistant to both the enzymes than the unmodified ODN. These nuclease-resistant properties are noteworthy, since they have natural phosphodiester linkages. Next, the thermal stabilities of duplexes consisting of these ODNs and either the complementary DNA or RNA were studied by thermal denaturation. The ODNs that contain 4 were found to enhance the thermal stability of the duplexes with the complementary DNA, while those containing 5 or 6 decreased the thermal stability of the ODN-DNA duplexes. On the other hand, all ODNs that contained 4, 5, or 6 decreased the thermal stability of the ODN-RNA duplexes.  相似文献   

12.
1. Glucose oxidase (EC 1.1.3.4) and urease (EC 3.5.1.5) were covalently attached through glutaraldehyde to low-molecular-weight nylon powder. 2. Immobilized derivatives of glucose oxidase and urease were prepared by cross-linking the respective enzymes within the matrix of a nylon membrane. 3. An improved process is described for the immobilization of glucose oxidase and urease on the inside surface of partially hydrolysed nylon tube. 4. Automated analytical procedures are described for the determination of glucose with each of the three immobilized glucose oxidase derivatives and for the determination of urea with each of the three immobilized urease derivatives. 5. The efficiencies of the three immobilized enzyme structures as reagents for the automated determination of their substrates were compared.  相似文献   

13.
We present a new methodology for site-specific sensing of peptide–oligonucleotide (ODN) interactions using a solvatochromic fluorescent label based on 3-hydroxychromone (3HC). This label was covalently attached to the N-terminus of a peptide corresponding to the zinc finger domain of the HIV-1 nucleocapsid protein (NC). On interaction with target ODNs, the labeled peptide shows strong changes in the ratio of its two emission bands, indicating an enhanced screening of the 3HC fluorophore from the bulk water by the ODN bases. Remarkably, this two-color response depends on the ODN sequence and correlates with the 3D structure of the corresponding complexes, suggesting that the 3HC label monitors the peptide–ODN interactions site-specifically. By measuring the two-color ratio, we were also able to determine the peptide–ODN-binding parameters and distinguish multiple binding sites in ODNs, which is rather difficult using other fluorescence methods. Moreover, this method was found to be more sensitive than the commonly used steady-state fluorescence anisotropy, especially in the case of small ODNs. The described methodology could become a new universal tool for investigating peptide–ODN interactions.  相似文献   

14.
Urease (EC 3.5.1.5) was covalently attached through glutaraldehyde to partially hydrolysed nylon 6/6 tubes. The highest activity of immobilized enzyme was obtained at 65?°C and pH 6.5, while the optimum temperature for free urease was found to be 25?°C. Immobilized urease showed an improved thermal stability in comparison to free urease. It retained 76% of the original activity after 60 days when stored at 4?°C and 78% of the activity after 5 repeated uses.  相似文献   

15.
Quantitative molecular hybridization on nylon membranes   总被引:3,自引:0,他引:3  
A study of DNA hybridization to DNA covalently bound to nylon membranes was made in order to develop a quantitative method for molecular hybridization using a nylon-based matrix. Chloroplast DNA was covalently attached to nylon membranes by irradiation at 254 nm. Under hybridization conditions the initial rate of DNA loss from the nylon membranes was 5-10% per 24 h, while under comparable conditions DNA bound to nitrocellulose membranes was lost at a rate of 38 to 61% per 24 h. Several sets of hybridization conditions were examined to select one giving reasonable hybridization rates and minimal loss of bound DNA. Under the conditions selected [Denhardt's solution (D. Denhardt, 1966, Biochem. Biophys. Res. Commun. 23, 641-646), 0.5 M NaCl, 0.1% sodium dodecyl sulfate, and 31.4% formamide at 50 degrees C for 92 h], hybridization was observed to be 29% more efficient on nylon membranes than on nitrocellulose. Several attempts to remove previously hybridized DNA from nylon membranes proved only partially successful. Reuse of the membranes, therefore, was of limited value. Quantitative hybridization of total radiolabeled tobacco cellular DNA to cloned tobacco chloroplast DNA attached to nylon yielded results similar to those previously reported using nitrocellulose membranes. However, use of nylon membranes greatly facilitated the manipulations required in the procedure.  相似文献   

16.
Delivery of antisense oligonucleotide to the cornea by iontophoresis   总被引:6,自引:0,他引:6  
We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the design of specific antiangiogenic strategy in diseases of the cornea.  相似文献   

17.
Covalent coupling of chitosan (CS) to activated nylon membrane was performed after the reaction of the microporous nylon membrane with formaldehyde. Non-specific adsorption on the CS-coated nylon membrane decreased greatly, compared with plain nylon membrane. The dye Cibacron Blue F3GA (CB F3GA) as a ligand was then covalently immobilized on the CS-coated membranes. Physical properties of the composite membrane and its applications in affinity membrane chromatography were examined. The contents of CS and CB F3GA-attached membranes were 89.6 mg/g nylon membrane and 146.1 micromol/g nylon membrane, respectively. These CB F3GA-attached composite membranes were used in the papain adsorption studies. Higher papain adsorption capacity, up to 235.3mg/g affinity membrane, was obtained. The adsorption isotherm fitted the Freundlich model well. Significant amount of the adsorbed papain (about 94.3%) was eluted by 1.0M NaSCN at pH 9.0. Experiments on regeneration and dynamic adsorption were also performed. It appears that CB F3GA-CS nylon membranes can be applied for papain separation without causing any denaturation.  相似文献   

18.
The synthesis of a series of water-soluble galactopyranose-functionalized polystyrene-polyvinyl ether dendrigrafts and their characterization (in solution and thin solid deposits) have been achieved. The presence of external galactopyranose groups on dendritic polymers has been exploited to prepare dendrigraft-oligonucleotide conjugates using a simple one-step coupling procedure with amino-ended oligonucleotides (ODNs). Several parameters such as the peripherical density of hydrophilic branches, the polymerization degree of polystyrene or poly(hydroxyethyl vinyl ether) blocks, and the number of galactopyranose groups were tuned. A capture test with short labeled complementary ODNs (25 bases) confirmed the presence of covalently bound ODNs on various kinds of dendrigrafts. The ability of the dendritic polymers to enhance the sensitivity of enzyme-linked oligosorbent assay (ELOSA) diagnostic tests (detection of hepatitis B virus, DNA target of 2400 bases) was then evaluated, especially the influence of the macromolecular architecture and the impact of the structural parameters. The dendrigraft-ODN conjugate with the lower saccharide external density was found to lead to a very significant amplification of the fluorescence signal, corresponding to a limit of sensitivity of 10(9) DNA copies per milliliter (instead of 10(11) DNA copies per milliliter without using dendrigrafts). Conversely, the dendrigrafts exhibiting a very high number of branches and galactopyranose groups at their periphery were not able to induce a better sensitivity due to steric hindrance generated by the peripheral congestion on these polymers.  相似文献   

19.
Oligodeoxynucleotides containing CpG motifs (CpG ODNs) mimic microbial DNA and activate effectors of the innate immune response, which limits the spread of pathogens and promotes an adaptive immune response. CpG ODNs have been shown to protect mice from infection with intracellular pathogens. Unfortunately, CpG motifs that optimally stimulate humans are only weakly active in mice, mandating the use of nonhuman primates to monitor the activity and safety of "human" CpG ODNs in vivo. This study demonstrates that CpG ODN treatment of rhesus macaques significantly reduces the severity of the lesions caused by a challenge with Leishmania: Leishmania superinfection is common in immunocompromised hosts, particularly those infected with HIV. This study shows that PBMCs from HIV-infected subjects respond to stimulation with CpG ODNs. To determine whether CpG ODNs can protect retrovirus-infected primates, SIV-infected macaques were treated with CpG ODNs and then challenged with Leishmania: Both lesion size and parasite load were significantly reduced in the CpG-treated animals. These findings support the clinical development of CpG ODNs as immunoprotective agents in normal and HIV-infected patients.  相似文献   

20.
Endocrine disruptors are chemicals able to induce adverse effects into wildlife and humans owing to their ability of interfering with the endocrine system. Bisphenol A (BPA) has been chosen as model of endocrine disruptors. To reduce the BPA pollution in waters we proposed the employment of the process of thermodialysis. Two different catalytic membranes have been prepared by covalently immobilizing laccase (from Trametes versicolor) by means of a diazotation process or tyrosinase (from mushroom) by condensation. The support was a nylon membrane. The bioremediation power of both catalytic membranes has been analysed under isothermal and non-isothermal conditions.The advantages in using non-isothermal bioreactors were discussed in terms of reduction of the bioremediation times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号