首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through the use of computational modeling, a series of pyrimidinetrione-based inhibitors of MMP-13 was designed based on a lead inhibitor identified through file screening. Incorporation of a biaryl ether moiety at the C-5 position of the pyrimidinetrione ring resulted in a dramatic enhancement of MMP-13 potency. Protein crystallography revealed that this moiety binds in the S(1)(') pocket of the enzyme. Optimization of the C-4 substituent of the terminal aromatic ring led to incorporation of selectivity versus MMP-14 (MT-1 MMP). Structure activity relationships of the biaryl ether substituent are presented as is pharmacokinetic data for a compound that meets our in vitro potency and selectivity goals.  相似文献   

2.
Phosphinic acid-based inhibitors of MMP-13 have been investigated with the aim of identifying potent inhibitors with high selectivity versus MMP-1. Independent variation of the substituents on a P(1)' phenethyl group and a P(2) benzyl group improved potencies in both cases around 3-fold over the unsubstituted parent. Combining improved P(1)' and P(2) groups into a single molecule gave an inhibitor with a 4.5 nM IC(50) against MMP-13 and which is 270-fold selective over MMP-1.  相似文献   

3.
The design and synthesis of a series of highly selective hydroxamate inhibitors of stromelysin-1 (MMP-3) is described. Substitution of a 4-biaryl piperidine sulfonamide core, which binds at the S1′ subsite of MMP-3, was optimised to give potent inhibitors of MMP-3, with greater than 300-fold selectivity over MMP-1, MMP-2, MMP-9 and MMP-14. Compounds 26 and 27 were identified as having the best balance of pharmacology and properties required for topical drug delivery.  相似文献   

4.
The high-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a sulfonamide derivative of a hydroxamic acid compound (WAY-151693) has been determined by multidimensional heteronuclear NMR. A total of 30 structures were calculated for residues 7-164 by means of hybrid distance geometry-simulated annealing using a total of 3280 experimental NMR restraints. The atomic rms distribution about the mean coordinate positions for the 30 structures is 0.43(+/-0.05) A for the backbone atoms, 0.80(+/-0.09) A for all atoms, and 0.47(+/-0.04) A for all atoms excluding disordered side-chains. The overall structure of MMP-13 is composed of a beta-sheet consisting of five beta-strands in a mixed parallel and anti-parallel arrangement and three alpha-helices where its overall fold is consistent with previously solved MMP structures. A comparison of the NMR structure of MMP-13 with the published 1.6 A resolution X-ray structure indicates that the major differences between the structures is associated with loop dynamics and crystal-packing interactions. The side-chains of some active-site residues for the NMR and X-ray structures of MMP-13 adopt distinct conformations. This is attributed to the presence of unique inhibitors in the two structures that encounter distinct interactions with MMP-13. The major structural difference observed between the MMP-13 and MMP-1 NMR structures is the relative size and shape of the S1' pocket where this pocket is significantly longer for MMP-13, nearly reaching the surface of the protein. Additionally, MMP-1 and MMP-13 exhibit different dynamic properties for the active-site loop and the structural Zn-binding region. The inhibitor WAY-151693 is well defined in the MMP-13 active-site based on a total of 52 distance restraints. The binding motif of WAY-151693 in the MMP-13 complex is consistent with our previously reported MMP-1:CGS-27023A NMR structure and is similar to the MMP-13: RS-130830 X-ray structure.  相似文献   

5.
Matrix metalloproteinases (MMPs), a group of more than 20 zinc-containing endopeptidases, are up-regulated in many diseases, but the use of MMP inhibitors for therapeutic purposes has often been disappointing, possibly for the limited specificity of the drugs used in clinical trials. In principle, individual MMPs could be specifically drugged by monoclonal antibodies, either by inhibition of their catalytic activity or by antibody-based pharmacodelivery strategies. In this article we describe the isolation and affinity maturation of recombinant antibodies (SP1, SP2, SP3) specific to the murine catalytic domains of MMP-1A, MMP-2 and MMP-3. These novel reagents allowed a systematic comparative immunofluorescence analysis of the expression patterns of their cognate antigens in a variety of healthy, cancerous and arthritic murine tissues. While all three MMPs were strongly expressed in tumor and arthritis specimens, MMP-1A was completely undetectable in the normal tissues tested, while MMP-2 and MMP-3 exhibited a weak expression in certain normal tissues (e.g., liver). The new antibodies may serve as building blocks for the development of antibody-based therapy strategies in mouse models of pathology.  相似文献   

6.
目的:探究百令胶囊联合厄贝沙坦片对膜性肾病患者基质金属蛋白酶-9、3和金属蛋白酶组织抑制物-1影响。方法:收集我院肾内科收治的膜性肾病患者98例,根据随机对照表分为对照组和试验组,每组49例。对照组给予厄贝沙坦片治疗,试验组联合百令胶囊治疗。对比分析两组患者的临床疗效、血清Scr、BUN、UA、Ccr、尿蛋白、MMP-9、MMP-3及TIMP-l水平以及不良反应的发生情况。结果:治疗后,对照组临床总有效率为81.63%,显著低于试验组的95.92%(P0.05)。两组治疗后血清Scr、BUN、UA、MMP-9、MMP-3、TIMP-l水平均显著降低,且试验组显著低于对照组(P0.05),Ccr水平升高,且试验组显著高于对照组(P0.05)。对照组不良反应发生率为10.20%,试验组为6.25%,差异无统计学意义(P0.05)。结论:百令胶囊联合厄贝沙坦片对膜性肾病患者的临床疗效显著,安全性较高,可能与其显著降低MMP-9、MMP-3和TIMP-1水平有关。  相似文献   

7.
Discovery and optimization of potency and selectivity of a non-Zn-chelating MMP-13 inhibitor with the aid of protein co-crystal structural information is reported. This inhibitor was observed to have a binding mode distinct from previously published MMP-13 inhibitors. Potency and selectivity were improved by extending the hit structure out from the active site into the S1′ pocket.  相似文献   

8.
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.  相似文献   

9.
The X-ray crystal structures of the catalytic domain of human collagenase-3 (MMP-13) and collagenase-1 (MMP-1) with bound inhibitors provides a basis for understanding the selectivity profile of a novel series of matrix metalloprotease (MMP) inhibitors. Differences in the relative size and shape of the MMP S1' pockets suggest that this pocket is a critical determinant of MMP inhibitor selectivity. The collagenase-3 S1' pocket is long and open, easily accommodating large P1' groups, such as diphenylether. In contrast, the collagenase-1 S1' pocket must undergo a conformational change to accommodate comparable P1' groups. The selectivity of the diphenylether series of inhibitors for collagenase-3 is largely determined by their affinity for the preformed S1' pocket of collagenase-3, as compared to the induced fit in collagenase-1.  相似文献   

10.
11.
Through the use of empirical and computational methods, phosphinate-based inhibitors of MMP-1 and MMP-13 that bind into the S2 pocket of these enzymes were designed. The synthesis and testing of 2 suggested that binding was occurring as hypothesized. Structure determination of a co-crystal of 2 bound to the catalytic domain of MMP-1 confirmed the binding mode. Substituents binding into S2, S1', S2' and S3', were optimized yielding compounds with low double-digit nM IC50's against these enzymes.  相似文献   

12.
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. However, the mechanisms responsible for RCC metastasis are still needed further illustration. Our present study revealed that a seven-transmembrane receptor G-protein coupled estrogen receptor (GPER) was highly detected in various RCC cell lines such as ACHN, OS-RC-2 and SW839. The activation of GPER by its specific agonist G-1 significantly promoted the in vitro migration and invasion of ACHN and OS-RC-2 cells. G-1 also up regulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. The inhibitor of MMP-9 (Cat-444278), but not MMP-2 (Sc-204092), abolished G-1 induced cell migration, which suggested that MMP-9 is the key molecule mediating G-1 induced RCC progression. Further, G-1 treatment resulted in phosphorylation of AKT and ERK in RCC cells. PI3K/AKT inhibitor (LY294002), while not ERK inhibitor (PD98059), significantly abolished G-1 induced up regulation of MMP-9 in both AHCN and OS-RC-2 cells. Generally, our data revealed that activation of GPER by its specific agonist G-1 promoted the metastasis of RCC cells through PI3K/AKT/MMP-9 signals, which might be a promising new target for drug discovery of RCC patients.  相似文献   

13.
Platelet-derived growth factor (PDGF) stimulates expression of matrix metalloproteinases (MMPs), including stromelysin-1 (MMP-3). Induction of these expressions is known to occur during the course of atherosclerosis, tumor invasion, and metastasis. We investigated PDGF-alpha receptor (alphaR)- and beta receptor (betaR)-mediated signaling pathways for the expression of MMP-3 and invasion activity using porcine aortic endothelial (PAE) cells with stable expression of normal or mutated PDGF receptors. RT-PCR and Western blot analyses revealed that PDGF-BB induces MMP-3 expression in PAE cells that exclusively express either the PDGF-alphaR or the -betaR, but not in non-transfected control cells. To identify the signals necessary for PDGF receptor-mediated induction of MMP-3 expression, several lines of PAE cells expressing mutant PDGF receptors were further analyzed. Cells expressing mutant PDGF receptors unable to associate with Src or PLCgamma, retained the ability to induce MMP-3 expression as a result of PDGF-BB stimulation. However, incubation with PDGF-BB did not induce MMP-3 expression in cells expressing a mutant PDGF-betaR unable to associate with phosphatidylinositol 3(')-kinase (PI3K). LY294002, a PI3K inhibitor, reduced PDGF-BB-stimulated MMP-3 expression in PAE cells expressing wild-type PDGF receptors. In contrast, PDGF-BB induced MMP-3 expression in the presence of U-73122, a PLCgamma inhibitor. Moreover, PDGF-BB enhanced the invasiveness of cells expressing wild type PDGF-beta receptors, but not of cells expressing mutant PDGF-betaRs impaired in their ability to associate with PI3K. In light of these results, it appears that PDGF-BB is capable of inducing MMP-3 expression through both the PDGF-alphaR and the -betaR, and the effects are contributed by the PI3K-mediated transduction pathways.  相似文献   

14.
15.
16.
The matrix metalloproteinases are crucial in the physiological and pathological degradation of the mammalian extracellular matrix, including breast tumours, and osteoarthritic cartilage. These enzymes are classified according to their matrix substrate specificity. Collagenase-3 (MMP-13) is a member of this family and preferentially cleaves type II collagen, cartilage, fibronectin and aggrecan. Collagenase-3 is normally expressed in hypertrophic chondrocytes, periosteal cells, and osteoblasts during bone development. The structure of the catalytic domain of recombinant mouse collagenase-3, complexed to the hydroxamate inhibitor (RS-113456), is reported at 2.0 A resolution. Molecular replacement and weak phasing information from a single derivative determined the structure. Neither molecular replacement nor derivative methods had a sufficient radius of convergence to yield a refinable structure. The structure illuminates the atomic zinc ion interactions with functional groups in the active site, emphasizing zinc ligation and the very voluminous hydrophobic P1' group for the inhibitor potency. The structure provides insight into the specificity of this enzyme, facilitating design of specific inhibitors to target various diseases.  相似文献   

17.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

18.
Apelin is an adipokine that has a critical role in the development of atherosclerosis, which may offer potential for therapy. Because migration of vascular smooth muscle cells (VSMCs) is a key event in the development of atherosclerosis, understanding its effect on the atherosclerotic vasculature is needed. Here we investigated the effect of apelin on VSMC migration and the possible signaling mechanism. In cultured rat VSMCs, apelin dose- and time-dependently promoted VSMC migration. Apelin increased the phosphorylation of Akt, whereas LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and an Akt1/2 kinase inhibitor blocked the apelin-induced VSMC migration. Apelin dose-dependently induced phosphorylation of Forkhead box O3a (FoxO3a) and promoted its translocation from the nucleus to cytoplasm, which were blocked by LY294002 and Akt1/2 kinase inhibitor. Furthermore, apelin increased matrix metalloproteinase 2 (MMP-2) expression and gelatinolytic activity. Overexpression of a constitutively active, phosphorylation-resistant mutant, TM-FoxO3a, in VSMCs abrogated the effect of apelin on MMP-2 expression and VSMC migration. ARP101, an inhibitor of MMP-2, suppressed apelin-induced VSMC migration. Moreover, the levels of apelin, phosphorylated Akt, FoxO3a, and MMP-2 were higher in human carotid-artery atherosclerotic plaque than in adjacent normal vessels. We demonstrate that PI3K/Akt/FoxO3a signaling may be involved in apelin inducing VSMC migration. Phosphorylation of FoxO3a plays a central role in mediating the apelin-induced MMP-2 activation and VSMC migration.  相似文献   

19.
Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP-11) whose proteolytic activity plays an important role in tumorigenicity enhancement. In breast cancer, ST3 is a bad prognosis marker: its expression is associated with a poor clinical outcome. This enzyme therefore represents an attractive therapeutic target.The topology of matrix metalloproteinases (MMPs) is remarkably well conserved, making the design of highly specific inhibitors difficult. The major difference between MMPs lies in the S(1)' subsite, a well-defined hydrophobic pocket of variable depth. The present crystal structure, the first 3D-structure of the ST3 catalytic domain in interaction with a phosphinic inhibitor mimicking a (d, l) peptide, clearly demonstrates that its S(1)' pocket corresponds to a tunnel running through the enzyme. This open channel is filled by the inhibitor P(1)' group which adopts a constrained conformation to fit this pocket, together with two water molecules interacting with the ST3-specific residue Gln215. These observations provide clues for the design of more specific inhibitors and show how ST3 can accommodate a phosphinic inhibitor mimicking a (d, l) peptide.The presence of a water molecule interacting with one oxygen atom of the inhibitor phosphinyl group and the proline residue of the Met-turn suggests how the intermediate formed during proteolysis may be stabilized. Furthermore, the hydrogen bond distance observed between the methyl of the phosphinic group and the carbonyl group of Ala182 mimics the interaction between this carbonyl group and the amide group of the cleaved peptidic bond. Our crystal structure provides a good model to study the MMPs mechanism of proteolysis.  相似文献   

20.
Ab initio calculations (B3LYP/Lanl2DZ level of theory) were performed in this study to determine all the structural and catalytic zinc parameters required in order to study MMPs and their complexes with hydroxamate inhibitors by means of the AMBER force field. The parameters thus obtained were used in order to study the docking of some known MMPi (Batimastat, CGS 27023A and Prinomastat) and our previously described inhibitor a which had shown an inhibitory activity for MMP-1, and -2, with the aim of explaining the different selectivity. On this basis the two enantiomers (R)-b and (S)-b were designed and synthesized, as more potent MMP-2 inhibitors than our previously described inhibitor a. Between these two enantiomers the eutomer (R)-b proved to be 24.7 times and 15.3 times more potent than CGS 27023A and the parent compound a on MMP-2, maintaining a higher index of MMP-2/MMP-1 selectivity compared with CGS 27023A and the more potent inhibitor Prinomastat. The hydroxamate (R)-b can be considered as a progenitor of a new class of biphenylsulfonamido-based inhibitors that differ from compound a in the presence of an alkyl side chain on the C alpha atom, and show different potency and selectivity profiles on the two MMPs considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号