首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report changes in biomarker enzymes (cytochrome P4501A, glutathione-S-transferase) and protein expression (cytochrome P4501A) in adult painted turtles, Chrysemys picta, as part of a study of the potential impact of contaminants originating from the Massachusetts Military Reservation on Cape, Cod, MA. In animals from both Moody Pond, a site potentially impacted by contaminants, and Washburn Pond, a nonimpacted site, rates of hepatic microsomal ethoxyresorufin-O  相似文献   

2.
A putative binding region for cumene hydroperoxide in the active site of cytochrome P4501A1 was identified using photoaffinity labeling. Thr501 was determined as the most likely site of modification by azidocumene used as the photoaffinity label (T. Cvrk and H. W. Strobel, (1998) Arch. Biochem. Biophys. 349, 95-104). To evaluate further the role of this amino acid residue a site-directed mutagenesis approach was employed. P4501A1 wild type and two mutants, P4501A1Glu501 and P4501A1Phe501, were expressed in and purified from Escherichia coli and used for kinetic analysis to confirm the role of Thr501 residue in cumene hydroperoxide binding. The mutation resulted in a two- to fourfold decrease in the rate of heme degradation in the presence of 0.5 mM cumene hydroperoxide. The mutations do not prevent or significantly alter binding of the tested substrates; however, binding of 2-phenyl-2-propanol (product generated from cumene hydroperoxide) to P4501A1Glu501 and P4501A1Phe501 exhibited four- and eightfold decreases, respectively, suggesting that the mutations strongly affected the affinity of cumene hydroperoxide for the P4501A1 active site. The kinetic analysis of cumene hydroperoxide-supported reactions showed that both mutants exhibit increased Km and decreased VMax values for all tested substrates. Furthermore, the mutations affected product distribution in testosterone hydroxylation. On the basis of P4501A1Glu501 and P4501A1Phe501 characterization, it can be concluded that Thr501 plays an important role in cumene hydroperoxide/P4501A1 interaction.  相似文献   

3.
Immature rainbow trout (Oncorhynchus mykiss) in two separate experiments received a single intraperitoneal injection of 0.1, 1 and 5 mg/kg of either 3,3′,4,4′-tetra- or 3,3′,4,4′,5-pentachlorobiphenyl (IUPAC congeners 77 and 126, respectively). The experiments were run at water temperatures of 6 °C and 4 °C. Fish were killed 6 days after the injection. Biotransformation enzyme activities and cytochrome P4501A (CYP1A) amount and occurrence in different tissues were assayed. Congeners 77 and 126 strongly induced 7-ethoxyresorufin O-deethylase (EROD) and benzo(α)pyrene hydroxylase (AHH) activities in liver and kidney of rainbow trout. The induction of these cytochrome P4501A dependent monooxygenases was dose-related especially with congener 77 in the kidney. However, in the liver the highest dose of both congeners and in kidney the highest dose of congener 126 did not increase the catalytic monooxygenase activities as much as would have been expected based on the responses obtained with the lower doses. This may be because the monooxygenase activities already had attained their maximal induction capacity at 1 mg/kg dose of each congener. The PCB residues in liver were also determined and found to be highest after 5 mg/kg injections (610 μg/kg wet weight with congener 77 and 220 μg/kg with congener 126). When cytochrome P4501A protein content was measured, the induction of cytochrome P4501A was still on the increase even in those cases where catalytic activity failed to show any further induction. Immunohistochemical samples from liver, kidney and intestine showed cytochrome P4501A staining which strongly correlated with cytochrome P4501A in microsomes. Such observations suggest that the amount and occurrence of P4501A in the tissues can express the induction even when catalytic activities seem to be suppressed. With respect to enzymes mediating conjugation reactions, hepatic and renal UDP-glucuronosyltransferase (UDP-GT) activities showed elevated levels especially with the 1 and 5 mg/kg doses of both congeners. Glutathione S-transferase (GST) activities did not show such a clear trend. Congeners 77 and 126 preferentially affected the P4501A enzymes but to some extent also conjugation activities.  相似文献   

4.
This study examined the toxic potential of a primary-treated municipal effluent, before and after ozonation, in freshwater mussels. Animals were exposed to various concentrations (0, 1, 3, 10 and 20% v/v) of a primary-treated effluent and also after a treatment with ozone at 10 mg/L in continuous flow-through mode for seven weeks. A suite of biomarkers was used to assess the potential toxic effects of various contaminants typically present in municipal wastewaters: heavy metal metabolism (metallothioneins and labile zinc), cytochrome P4501A1 and 3A4, glutathione S-transferase activities (biotransformation of organic compounds), lipid peroxidation and xanthine oxidoreductase (oxygen radical scavenging), DNA damage, mitochondrial electron transport activity at various temperatures and gonad lipid levels (cellular energy allocation) and aspartate transcarbamoylase and dihydrofolate reductase (gonad activity). On the one hand, some biomarkers, including metallothioneins, labile zinc, glutathione S-transferase, cytochrome P4503A4 activity, dehydrofolate reductase and aspartate transcarbamoylase, were readily decreased. In contrast, these biomarkers, cytochrome P4501A1, gill lipid peroxidation, DNA strand breaks in gills and digestive gland, mitochondrial electron transport at high and low temperatures (temperature-dependent activity) and total gonad lipids, were readily increased. In general, ozone treatment reduced adverse effects by either decreasing the intensity of the toxic responses or increasing the threshold concentration. For gill lipid peroxidation, however, intensity was greater at a higher threshold concentration. Ozone treatment eliminated the temperature sensitivity of the mitochondrial electron transport system, indicating a loss of interaction between temperature and urban pollution in terms of energy expenditure in mussels. Ozone treatment could significantly decrease either the toxic potency or intensity of urban pollutants at the expense of increased oxidative stress in gills of freshwater mussels.  相似文献   

5.
Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.  相似文献   

6.
Contaminated groundwater plumes have formed on the Massachusetts Military Reservation (MMR), a Superfund site on Cape Cod, Massachusetts, as a result of chemical waste disposal. The plumes are of concern to the local people who rely on groundwater as a drinking water source. We used the freshwater turtle as a sentinel species to monitor the reproductive effects of exposure and, by inference, the potential for impact on human health. Our observations of male Chrysemys picta field-trapped from Moody Pond (an impacted site) and Washburn Pond (a reference site) on Cape Cod extended and supported prior observations of reproductive deficits. Morphometric comparison of precloacal length (PCL), which is a sexually dimorphic trait in the turtle, showed that Moody Pond males had a significantly longer PCL than Washburn Pond males. Moody Pond turtles showed reduced testicular weight, which was associated with significantly smaller seminiferous tubule diameter. Epididymal sperm counts were also markedly reduced in Moody Pond animals compared to Washburn Pond animals. Testicular histology and gonial proliferation, as determined by PCNA, were similar in both male populations, while the Moody Pond males had significantly higher germ cell apoptosis than the animals in Washburn Pond. These results suggest that a low-level mixture of xenobiotic contaminants impairs the reproductive functions of turtles exposed to the impacted site but not to the reference site environment.  相似文献   

7.
Substrate specificity differences between various forms of cytochrome P450 (P450) are governed by substrate binding site amino acid residue differences. To determine the identities of these residues, four analogs of warfarin, a thoroughly investigated anticoagulant drug which is regio- and stereoselectively metabolized by many P450s, have been synthesized as photoaffinity probes. The probes 4'-, 6-, 7-, and 8-azidowarfarin were readily photolyzed in neutral solution by 254-nm light, with half-lives of less than 15 s. When the azidowarfarins were photolyzed in the presence of beta-naphthoflavone-inducible P4501A1 (2.5 microM) at -196 degrees C and the P450 was subsequently reconstituted for warfarin metabolism, 50% inactivation was achieved with 160 microM 4'-azidowarfarin, 64 microM 6-azidowarfarin, 127 microM 7-azidowarfarin, and 29 microM 8-azidowarfarin. This inactivation is irreversible. When these concentrations of the azidowarfarins were photolyzed prior to addition to P4501A1, less inhibition of P450 activity was detected and the inhibition was reversible. The CO-ferrous P450 spectrum of P4501A1 at 448 nm was diminished when photoactivated azidowarfarins bound to and inactivated the enzyme, with essentially no formation of P420 except in the case of 4'-azidowarfarin. The inactivation of P4501A1 by photoactivated 4'-azidowarfarin was prevented by 50% by 1.2 mM R-warfarin or 0.3 mM 4'-nitrowarfarin, consistent with the latter being a better P4501A1 substrate than R-warfarin. The photoinactivation of P4501A1 by each of the azidowarfarins was prevented to variable extents by R-warfarin or by 4'-, 6-, 7-, or 8-nitrowarfarin. Taken together these results demonstrate that all four azidowarfarins are potentially useful photoaffinity probes of the substrate binding site amino acid residues of P450s.  相似文献   

8.
Recent studies from our laboratory showed that the beta-naphthoflavone-inducible cytochrome P4501A1 is targeted to both the endoplasmic reticulum (ER) and mitochondria. In the present study, we have further investigated the ability of the N-terminal signal sequence (residues 1-44) of P4501A1 to target heterologous proteins, dihydrofolate reductase, and the mature portion of the rat P450c27 to the two subcellular compartments. In vitro transport and in vivo expression experiments show that N-terminally fused 1-44 signal sequence of P4501A1 targets heterologous proteins to both the ER and mitochondria, whereas the 33-44 sequence strictly functions as a mitochondrial targeting signal. Site-specific mutations show that positively charged residues at the 34th and 39th positions are critical for mitochondrial targeting. Cholesterol 27-hydroxylase activity of the ER-associated 1-44/1A1-CYP27 fusion protein can be reconstituted with cytochrome P450 reductase, but the mitochondrial associated fusion protein is functional with adrenodoxin + adrenodoxin reductase. Consistent with these differences, the fusion protein in the two organelle compartments exhibited distinctly different membrane topology. The results on the chimeric nature of the N-terminal signal of P4501A1 coupled with interaction with different electron transport proteins suggest a co-evolutionary nature of some of the xenobiotic inducible microsomal and mitochondrial P450s.  相似文献   

9.
A survey to evaluate the impact of organic contaminants on the mussel Mytilus galloprovincialis in the Venice Lagoon, Italy was carried out in May 1993. M. galloprovincialis were sampled from putative moderately contaminated (Alberoni, Lio Grande, Crevan), urban (Salute) and industrial (CVE) sites in the Venice Lagoon, and from a clean reference site (Plataforma) in the adjacent Adriatic Sea. Measurements comprised (i) whole-tissue body burdens of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and other organochlorines (DDTs, hexachlorocyclohexanes and hexachlorobenzene); and (ii) digestive gland microsomal cytochrome P450 (CYP)-dependent monooxygenase system (i.e. total CYP and cytochrome P4501A (CYP1A)-immunopositive protein levels, benzo(a)pyrene hydroxylase (BPH) activity) as a specific biomarker of impact by organic contaminants. Chemical analysis identified a contaminant gradient with Plataforma as the cleanest and CVE followed by Salute as the most contaminated extremes. No elevation of total CYP content or CYP1A-immunopositive protein level was seen at any of the lagoon sites compared with Plataforma. In contrast, BPH activity and BPH turnover (i.e. BPH activity per amount total CYP) were respectively 1- and 2.5-fold higher at CVE than Plataforma (P < 0.05), and indicated to be higher (up to 1-fold) at all the other lagoon sites compared with Plataforma. Correlation was seen between BPH activity and tissue levels of total aliphatic hydrocarbons (r = 0.94-0.98), but not between the former and total PAHs or PCBs. The results are consistent with other studies in the area and indicate greatest biological impact of contaminants was at CVE followed by the other lagoon sites, with a possible genotoxic role for the elevated BPH activity in the formation of bulky DNA-adducts.  相似文献   

10.
The food mutagen/carcinogen amino-3-methylimidazo[4,5-f]quinoline (IQ) is activated by cytochrome p4501a-2 via N-hydrox-ylation; various P450s may contribute to detoxification via ring hydroxylation. Alterations in P450 levels by IQ treatment might therefore influence its toxicity. To examine the role of Ah locus genotype on the biochemical effects of IQ, C57BL/6 (AhbAhb; p450Ia-½ inducible) and DBA/2 (AhdAhd, noninducible) mice of both sexes were given IQ at varying doses, with different vehicles and routes of administration. Livers taken after 24 hours were assessed for total cytochrome p450 and activities of ethoxyresorufin-O-deethylase (EROD, a p4501a-l activity, inducible in Ahb mice), meth-oxyresorufin-O-demethylase (MROD, a p4501a-2 activity), and benzyloxyresorufin-O-dealkylase (BzROD, an activity of p4502b). There was little effect on total cytochrome p450, but all three enzyme activities were often induced, a maximum of 2.5-fold, in both sexes and in DBA/2 as well as C57BL/6 mice. However, Western immunoblot analysis with monoclonal antibodies demonstrated an increase only in p4501a-2 protein. p4501a-l remained undetectable. A monoclonal antibody to p4502-b recognized one protein band in liver mi-crosomes from males and two bands in female mice of both strains. Amounts of these proteins were not altered by IQ treatment. Thus, IQ specifically, if moderately, induces its activating enzyme, p4501a-2, in a process that was not clearly related to Ah responsiveness.  相似文献   

11.
Recently, we showed that the major species of beta-naphthoflavone-inducible rat liver mitochondrial P450MT2 consists of N-terminal truncated microsomal P4501A1 (+33/1A1) and that the truncated enzyme exhibits different substrate specificity as compared with intact P4501A1. The results of the present study show that P450MT2 targeted to COS cell mitochondria by transient transfection of P4501A1 cDNA is localized inside the mitochondrial inner membrane in a membrane-extrinsic orientation. Co-expression with wild type P4501A1 and adrenodoxin (Adx) cDNAs resulted in 5-7-fold higher erythromycin N-demethylation (ERND) in the mitochondrial fraction but minimal changes in the microsomal fraction of transfected cells. Erythromycin, a potent inhibitor of bacterial and mitochondrial protein synthesis, caused 8-12-fold higher accumulation of CYP1A1 mRNA, preferential accumulation of P450MT2, and 5-6-fold higher ERND activity in the mitochondrial compartment of rat C6 glioma cells. Consistent with the increased mitochondrial ERND activity, co-expression with P4501A1 and Adx in COS cells rendered complete protection against erythromycin-mediated mitochondrial translation inhibition. Mutations that specifically affect the mitochondrial targeting of P4501A1 also abolished protection against mitochondrial translation inhibition. These results for the first time suggest a physiological function for the xenobiotic inducible cytochrome P4501A1 against drug-mediated mitochondrial toxicity.  相似文献   

12.
We investigated whether the presence of (+)-anti-benzo(a)pyrene diolepoxide adducts to serum albumin (BPDE-SA) among workers exposed to benzo(a)pyrene (BaP) and unexposed reference controls was influenced by genetic polymorphisms of cytochrome P4501A1 (CYP1A1), microsomal epoxide hydrolase (EHPX), glutathione S-transferases M1 (GSTM1) and P1 (GSTP1), all involved in BaP metabolism. Exposed workers had significantly higher levels of adducts (0.124 ± 0.02 fmol BPTmg-1 SA, mean ± SE) and a higher proportion of detectable adducts (40.3%) than controls (0.051 ± 0.01 fmol BPT mg-1 SA; 16.1%) (p = 0:014 and p = 0:012). Smoking increased adduct levels only in occupationally exposed workers with the GSTM1 deletion (GSTM1 null) (p = 0:034).

Smokers from the exposed group had higher adduct levels when they were CYP1A1 *1/*1 wild-type rather than heterozygous and homozygous for the variant alleles (CYP1A1 *1/*2 plus *2/*2) (p = 0:01). The dependence of BPDE-SA adduct levels and frequency on the CYP1A1 *1/*1 genotype was most pronounced in GSTM1-deficient smokers. Exposed workers with GSTM1 null/GSTP1 variant alleles had fewer detectable adducts than those with the GSTM1 null/GSTP1*A wild-type allele, supporting for the first time the recent in vitro finding that GSTP1 variants may be more effective in the detoxification of BPDE than the wild-type allele. Logistic regression analysis indicated that occupational exposure, wild-type CYP1A1*1/*1 allele and the combination of GSTM1 null genotype+EHPX genotypes associated with predicted low enzyme activity were significant predictors of BPDE-SA adducts. Though our findings should be viewed with caution because of the relatively limited size of the population analysed, the interaction between these polymorphic enzymes and BPDE-SA adducts seems to be specific for high exposure and might have an impact on the quantitative risk estimates for exposure to polycyclic aromatic hydrocarbons.  相似文献   

13.
It has been proposed that negatively charged amino acids on the surface of reductase and positively charged amino acids on the surface of P450 mediate the binding of both proteins through electrostatic interactions. In this study, we used a site-directed mutagenesis approach to determine a role for two lysine residues (Lys271 and Lys279) of cytochrome P4501A1 in the interaction of P4501A1 with reductase. We prepared two mutants P4501A1Ile271 and P4501A1Ile279 with a mutation of the lysine at positions 271 and 279, respectively. We observed a strong inhibition (>80%) of the 7-ethoxycoumarin and ethoxyresorufin deethylation activity in the reductase-supported system for both mutants. In the cumene hydroperoxide-supported system, P4501A1Ile279 exhibited wild-type activity, but the P4501A1Ile271 mutant activity remained low. The CD spectrum and substrate-binding assay indicated that the secondary structure of P4501A1Ile271 is perturbed. To evaluate further the involvement of these P4501A1 lysine residues in reductase binding, we measured the KM of reductase for wild type and mutants. Both wild type and P4501A1Ile271 reached saturation in the range of reductase concentrations tested with KM values 5.1 and 11.2 pM, respectively. The calculated KM value for P4501A1Ile279 increased 9-fold, 44.4 pM, suggesting that the mutation affected binding of reductase to P4501A1. Stopped-flow spectroscopy was employed to evaluate the effect of mutations on electron transfer from reductase to heme iron. Both wild type and P450Ile279 showed biphasic kinetics with a approximately 40% participation of the fast step in the total activity. On the other hand, only single-phase kinetics for iron reduction was observed for P450Ile271, suggesting that the low activity of this mutant can be attributed not only to major structural changes but also to a disturbance in the electron transport.  相似文献   

14.
The constitutive and induced activities of cytochrome P-4501A isoforms in hepatoma McA 7777 sublines with different levels of colchicine (CH) resistance were studied. The higher CH resistance was associated with the elevated functional activity of P-glycoprotein (Pgp). The constitutive level of benzo(a)pyrene hydroxylase and 7-ethoxyresorufin O-deethylase (cytochrome P-4501A-dependent activities) were the same in sublines with different CH resistance levels. However, benzo(a)-anthracene, a cytochrome P-4501A inducing agent, more effectively induced benzo(a)pyrene hydroxylase and 7-ethoxyresorufin O-deethylase activities in sublines with elevated P-glycoprotein activity. The toxicity of benzo(a)pyrene, a compound which is simultaneously a cytochrome P-4501A-inducing agent and a toxic agent activated by cytochrome P-4501A, is more effective in sublines with elevated CH resistance. These results support the suggestion about the coordinated regulation of enzyme systems involved in the defence against various lipophilic xenobiotics. The possibility to overcome the Pgp-mediated MDR of some tumours by using a combination of some drugs including compounds which induce the cytochrome P-4501A isoforms and are activated by them is discussed.  相似文献   

15.
Smoking-related aromatic DNA adducts in lymphocytes were measured from smokers (n = 76), ex-smokers (n = 25) and non-smokers (n = 56) by the 32P-postlabelling method, to clarify whether a genetic polymorphism for metabolic enzymes could explain the inter-individual variation of DNA adduct levels. Adduct levels were compared with respect to smoking status and polymorphic genotypes of cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GTSM1). The mean adduct level (1.24 per 108 nucleotides) in smokers was significantly higher than that (0.85 per 108) in non-smokers. Although we expected higher adduct levels in the CYP1A1 variant or GSTM1 null subjects, the adduct level in 'GSN1 nulls' was significantly lower than that in 'GSTM1 presents' among smokers. DNA adduct levels had significant positive correlations with smoking indices such as number of cigarettes or smoking years in all subjects. In smokers only, however, no correlation was found, because there were negative correlations between adduct levels and smoking dose in GSTM1 null genotypes. CYP1A1 genotypes had no effects on adduct levels.  相似文献   

16.
We reported previously that various naphthoquinone derivatives inhibited cytochrome P450-dependent monooxygenase of liver and placenta microsomes [Muto, N. et al. (1987) Biochem. Biophys. Res. Commun. 146, 487-494]. To understand the complex inhibitory behaviors that were observed, it is desirable to study the relationship between structure and inhibitory activity of naphthoquinones in a simplified system containing a single P450 species. In the present study, the inhibitory effects of six derivatives of 1,4-naphthoquinone (hereafter referred to as NQ) on rat cytochrome P4501A1-dependent 7-ethoxycoumarin O-deethylation were examined using yeast microsomes containing overexpressed rat P4501A1. Of these, 2-methyl-5-hydroxy-NQ, 2-methyl-NQ, 2-hydroxy-NQ, and NQ showed competitive inhibition, whereas 5,8-dihydroxy-NQ and 5-hydroxy-NQ showed noncompetitive inhibition. Judging from the inhibitor constant (K(i)), the binding affinity of the four competitive inhibitors for the substrate-binding pocket of P4501A1 is in the order: 2-CH(3)-5-OH-NQ > 2-CH(3)-NQ > NQ > 2-OH-NQ. On binding with P4501A1, 2-CH(3)-5-OH-NQ, 2-CH(3)-NQ, and NQ induced distinct Type II, Type I, and reverse Type I spectra, respectively. These results indicate that methyl and hydroxyl groups introduced into NQ have unique effects on their binding mode and binding affinity.  相似文献   

17.
18.
19.
Carbofuran is a pesticide, which is used throughout the world as a nematicide and an acaricide. This pesticide integrates into living organisms through aquatic ecosystem. In earlier report, we had demonstrated that cytochrome P4501A was induced in cultured catfish hepatocytes in response to carbofuran, which might be responsible for the detoxification of this pesticide. As the underlying signaling mechanism associated with induction and regulation of cytochrome P4501A has not yet been well defined, we therefore in the present study have investigated to identify the regulatory network of cytochrome P4501A in catfish liver or cultured hepatocytes by targeting several key signaling molecules such as phosphatidyl inositol (PI) or protein kinase C (PKC), which are critical molecules for many important pathways. PKC and heat shock protein70 (HSP70) have been shown to be induced in response to carbofuran in catfish hepatocytes. Results also indicate that induction of CYP1A is modulated by HSP70 and PKC in fish hepatocytes. Thus our data shed light on the regulation of EROD activity, which has been used as a bio-monitoring tool for measuring aquatic pollution.  相似文献   

20.
7H-dibenzo[c,g]carbazole (DBC) is a potent liver and skin carcinogen, while its synthetic methyl derivative N-methyldibenzo[c,g]carbazole (MeDBC) is tissue specific sarcomagen. It is supposed that sarcomagenic activity of DBC depends on biotransformation at ring-carbon atoms, as with PAH, whereas the heterocyclic nitrogen plays an important role in liver carcinogenicity. The objective of this study was to elucidate the role of cytochrome P4501A1 in metabolic activation of sarcomagenic derivatives of DBC and to characterize the DNA damage profiles induced by DBC and MeDBC in relation to the mode of metabolic activation. The genetically engineered V79MZh1A1 cell line with stable expression of cDNA of human cytochrome P4501A1, the parental V79MZ cell line lacking any cytochrome P450 activity and human hepatocarcinoma Hep G2 cells were used as a model cells. Dose-dependent decrease in colony forming ability (CFA) was found in the V79MZh1A1 cell line after treatment of cells with DBC and MeDBC; however, no change in CFA was induced in parental V79MZ cells. These results were in a good correlation with DNA damaging effects of these two derivatives measured by the alkaline DNA unwinding (ADU) and the modified single cell gel electrophoresis (SCGE) techniques. Differences in DNA damage profiles induced by DBC and MeDBC were found in V79MZh1A1 and Hep G2 cells. These differences were probably the result of different reactive metabolite formation depending on chemical structure of the molecule and ways of biotransformation. This study showed that the cytochrome P4501A1 took part in activation of sarcomagenic DBC derivatives. Moreover, V79 cell lines with stable expression of different cytochromes P450 in combination with DNA repair endonucleases should be a useful tool for characterization of the role of individual cytochromes in metabolic activation pathways of DBC and MeDBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号