首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The possibility of different contributions from peripheral and central sensitization to distinct neuropathic pain syndromes has been studied in rats with chronic constriction of the sciatic nerve (CCI), showing positive behavioral signs of neuropathic pain. In anesthetized, paralyzed rats extracellular recordings were performed in the spinal sciatic afferent territory (L5-L6), ipsilateral to the injured nerve, from wide dynamic range (WDR) neurons. The spontaneous activity and the responses to noxious stimuli applied to the proper area, i.e., the skin innervated by the constricted sciatic nerve, and to "inappropriate" areas, like the tail and the area of skin supplied by the contralateral sciatic and saphenous nerves, were analyzed before and after input from the constricted nerve was reversibly blocked at the ganglionic level by local anesthetic. The neurons discharged spontaneously with high frequencies, and responded to the stimulation of proper and "inappropriate" areas with high frequency discharge and prolonged afterdischarges. During the ganglionic block, confirmed by the lack of responses to proper area stimulation, the WDR neuron background activity was significantly reduced; the responses to all "inappropriate" afferences were present, the frequency discharges being comparable to the preblock ones while the afterdischarges were significantly shorter. Since the efficacy of "inappropriate" inputs is related to neuronal sensitization, the persistence of these responses indicates that central neurons remain sensitized during peripheral block. In view of the relationship between the examined spontaneous and stimulated activities and neuropathic pain symptoms, the data suggest that central sensitization contributes with different drive strength to such symptoms, playing a crucial role in extraterritorial pain.  相似文献   

2.
Changes in neuronal excitability due to increase in excitatory transmitters and/or removal of local inhibition underlie central neuron sensitization and altered responsiveness related to painful sensory disorders. To distinguish the contribution of each of the two mechanisms, they have been mimicked separately in intact rats, by iontophoretically applying excitatory (NMDA) and disinhibitory (the glycine antagonist strychnine) substances during dorsal horn neuron recording. Wide dynamic range (WDR) neurons were extracellularly recorded at the L5-L6 lumbar level in anesthetized and paralyzed rats and an analysis was made, before and during the substance application, of the characteristics of the response to noxious stimuli applied to areas supplied by the ipsilateral sciatic nerve and the contralateral sciatic and saphenous nerves ("inappropriate" areas). The results show that the neuronal response properties were modified differently during the NMDA-induced hyperexcitability and strychnine-induced release of inhibition. Both manipulations brought about the unmasking of responses to previously ineffective, noxious stimuli applied to the contralateral sciatic and saphenous nerve areas, and the enhancement of the responses to noxious stimulation of the ipsilateral sciatic nerve area. However, it was only during the increased excitation induced by NMDA that the neurons exhibited hyperresponsiveness, with long-lasting afterdischarge, to noxious stimulation of the ipsi- and contralateral areas. Such response features resemble those described in sensitized neurons in neuropathic rats and associated with behavioral signs of hyperalgesia. This suggests, by inference, a crucial contribution of the NMDA-induced increased excitability to the expression of neuronal sensitization related to this painful sensory disorder.  相似文献   

3.
Changes in neuronal excitability due to increase in excitatory transmitters and/or removal of local inhibition underlie central neuron sensitization and altered responsiveness related to painful sensory disorders. To distinguish the contribution of each of the two mechanisms, they have been mimicked separately in intact rats, by iontophoretically applying excitatory (NMDA) and disinhibitory (the glycine antagonist strychnine) substances during dorsal horn neuron recording. Wide dynamic range (WDR) neurons were extracellularly recorded at the L5-L6 lumbar level in anesthetized and paralyzed rats and an analysis was made, before and during the substance application, of the characteristics of the response to noxious stimuli applied to areas supplied by the ipsilateral sciatic nerve and the contralateral sciatic and saphenous nerves ("inappropriate" areas). The results show that the neuronal response properties were modified differently during the NMDA-induced hyperexcitability and strychnine-induced release of inhibition. Both manipulations brought about the unmasking of responses to previously ineffective, noxious stimuli applied to the contralateral sciatic and saphenous nerve areas, and the enhancement of the responses to noxious stimulation of the ipsilateral sciatic nerve area. However, it was only during the increased excitation induced by NMDA that the neurons exhibited hyperresponsiveness, with long-lasting afterdischarge, to noxious stimulation of the ipsi- and contralateral areas. Such response features resemble those described in sensitized neurons in neuropathic rats and associated with behavioral signs of hyperalgesia. This suggests, by inference, a crucial contribution of the NMDA-induced increased excitability to the expression of neuronal sensitization related to this painful sensory disorder.  相似文献   

4.
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.  相似文献   

5.
To evaluate the involvement of the mitogen-activated protein kinase (MAPK) cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK) in trigeminal spinal subnucleus caudalis (Vc) neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI). The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR) cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.  相似文献   

6.
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.  相似文献   

7.
The present study aimed at investigating the time span it takes to remove a static mechanical allodynia (SMA) in humans suffering from chronic peripheral neuropathic pain. Forty-three subjects were included in the study and, during somatosensory rehabilitation, their SMA territory was precisely mapped. They then underwent distant vibrotactile counter stimulation (DVCS) treatment. It was observed that, with DVCS, SMA disappeared in all cases, and was transformed into an underlying hypoaesthesia. It was found that the "tenderness to touch" symptom (which is SMA) was located in the same territory as the underlying hypoaesthesia, which was located on a part of the cutaneous territory of a partially damaged nerve. These results demonstrate that treating patients suffering from neuropathic pain with DVCS revealed a skin territory of denervation that was previously masked by SMA. Thus, SMA can be considered as a paradoxical painful hypoaesthesia. Furthermore, mapping SMA is a valuable source of information for our understanding of abnormal sensory processing in neuropathic pain patients. We conclude that the mapping of the zone of hypersensitivity on the skin in humans suffering from chronic peripheral neuropathic pain improves diagnosis. The mapping of the zone of hypersensitivity is a tool to presume which branch of the peripheral nerve is damaged. The location of the axonal lesions is at the periphery, while the mechanism of pain sensitization is probably central and referred peripherally to the skin by a painful hypoaesthesia.  相似文献   

8.

Background

Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.

Results

The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.

Conclusion

These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.  相似文献   

9.
ObjectiveTo investigate the analgesic effect of amitriptyline on neuropathic pain model rats, diabetic neuropathic pain model rats and fibromyalgia model rats.MethodsThe healthy male Sprague wrote – Dawley (SD) rats were taken as the research object, and they were randomly divided into model group (group A), beside the sciatic nerve and injection of 5 mm amitriptyline group (group B), beside the sciatic nerve and injection of 10 mm amitriptyline group (group C), beside the sciatic nerve and injection of 15 mm amitriptyline group (group D), intraperitoneal injection of amitriptyline group (group E). Pain induced by selective injury of sciatic nerve branches in rats, pain induced by chronic compression of sciatic nerve, diabetic neuropathic pain and fibromyalgia were conducted to determine the pain threshold of mechanical stimulation in rats after drug administration.ResultsThe pain threshold of mechanical stimulation in the local amitriptyline group (group B, C, D) was significantly higher than that in the group A and group E at each time point after drug treatment, and the pain threshold of mechanical stimulation gradually increased with the increase of concentration. There was no statistically significant difference in mechanical stimulation pain threshold between group A and group E at each time point after drug treatment.ConclusionPara-sciatic injection of amitriptyline at different concentrations has analgesic effects on neuropathic pain, diabetic neuropathic pain and fibromyalgia in rat models, and amitriptyline directly ACTS on the local sciatic nerve.  相似文献   

10.
Nociceptive pain alerts the body to potential or actual tissue damage. By contrast, neuropathic or "noninflammatory" pain, which results from injury to the nervous system, serves no useful purpose. It typically continues for years after the original injury has healed. Sciatic nerve lesions can invoke chronic neuropathic pain that is accompanied by persistent, spontaneous activity in primary afferent fibers. This activity, which reflects changes in the properties and functional expression of Na+, K+, and Ca2+ channels, initiates a further increase in the excitability of second-order sensory neurons in the dorsal horn. This change persists for many weeks. The source of origin of the pain thus moves from the peripheral to the central nervous system. We hypothesize that this centralization of pain involves the inappropriate release of peptidergic neuromodulators from primary afferent fibers. Peptides such as substance P, neuropeptide Y (NPY), calcitonin-gene-related peptide (CGRP), and brain-derived neurotrophic factor (BDNF) may promote enduring changes in excitability as a consequence of neurotrophic actions on ion channel expression in the dorsal horn. Findings that form the basis of this hypothesis are reviewed. Study of the neurotrophic control of ion channel expression by spinal peptides may thus provide new insights into the etiology of neuropathic pain.  相似文献   

11.
Owolabi SA  Saab CY 《FEBS letters》2006,580(18):4306-4310
Fractalkine (FKN) evokes nociceptive behavior in nai ve rats, whereas minocycline attenuates pain acutely after neuronal injury. We show that, in nai ve rats, FKN causes hyperresponsiveness of lumbar wide dynamic range neurons to brush, pressure and pinch applied to the hindpaw. One day after spinal nerve ligation (SNL), minocycline attenuates after-discharge and responses to brush and pressure. In contrast, minocycline does not alter evoked neuronal responses 10 days after SNL or sciatic constriction, but increases spontaneous discharge. We speculate that microglia rapidly alter sensory neuronal activity in nai ve and neuropathic rats acutely, but not chronically, after injury.  相似文献   

12.
Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve injury-induced neuropathic pain.  相似文献   

13.
Chronic neuropathic pain, resulting from damage to the central or peripheral nervous system, is a prevalent and debilitating condition, affecting 7-18% of the population1,2. Symptoms include spontaneous (tingling, burning, electric-shock like) pain, dysaesthesia, paraesthesia, allodynia (pain resulting from normally non-painful stimuli) and hyperalgesia (an increased response to painful stimuli). The sensory symptoms are co-morbid with behavioural disabilities, such as insomnia and depression. To study chronic neuropathic pain several animal models mimicking peripheral nerve injury have been developed, one of the most widely used is Bennett and Xie''s (1988) unilateral sciatic nerve chronic constriction injury (CCI)3 (Figure 1). Here we present a method for performing CCI and testing pain hypersensitivity.CCI is performed under anaesthesia, with the sciatic nerve on one side exposed by making a skin incision, and cutting through the connective tissue between the gluteus superficialis and biceps femoris muscles. Four chromic gut ligatures are tied loosely around the sciatic nerve at 1 mm intervals, to just occlude but not arrest epineural blood flow. The wound is closed with sutures in the muscle and staples in the skin. The animal is then allowed to recover from surgery for 24 hrs before pain hypersensitivity testing begins.For behavioural testing, rats are placed into the testing apparatus and are allowed to habituate to the testing procedure. The area tested is the mid-plantar surface of the hindpaw (Figure 2), which falls within the sciatic nerve distribution. Mechanical withdrawal threshold is assessed by mechanically stimulating both injured and uninjured hindpaws using an electronic dynamic plantar von Frey aesthesiometer or manual von Frey hairs4. The mechanical withdrawal threshold is the maximum pressure exerted (in grams) that triggers paw withdrawal. For measurement of thermal withdrawal latency, first described by Hargreaves et al (1988), the hindpaw is exposed to a beam of radiant heat through a transparent glass surface using a plantar analgesia meter5,6. The withdrawal latency to the heat stimulus is recorded as the time for paw withdrawal in both injured and uninjured hindpaws. Following CCI, mechanical withdrawal threshold, as well as thermal withdrawal latency in the injured paw are both significantly reduced, compared to baseline measurements and the uninjured paw (Figure 3). The CCI model of peripheral nerve injury combined with pain hypersensitivity testing provides a model system to investigate the effectiveness of potential therapeutic agents to modify chronic neuropathic pain. In our laboratory, we utilise CCI alongside thermal and mechanical sensitivity of the hindpaws to investigate the role of neuro-immune interactions in the pathogenesis and treatment of neuropathic pain.  相似文献   

14.
急性神经损伤引起脊髓背角C-纤维诱发电位长时程增强   总被引:10,自引:0,他引:10  
Zhang HM  Zhou LJ  Hu XD  Hu NW  Zhang T  Liu XG 《生理学报》2004,56(5):591-596
神经损伤引起神经病性疼痛,表现为持续性痛超敏和痛觉过敏。目前对神经病性疼痛的机制尚缺乏了解。我们以往的工作表明强直电刺激坐骨神经可引起脊髓背角C-纤维诱发电位的长时程增强(long-term potentiation,LTP),该LTP被认为是病理性疼痛的突触模型。本研究的目的在于探讨急性神经损伤是否能在完整动物的脊髓背角诱发出C-纤维诱发电位LTP。在以测试刺激(10~20V,0.5ms)电刺激坐骨神经的同时在脊髓背角用微电极记录C一纤维诱发电位。分别用强直刺激、剪断或夹捏坐骨神经诱导LTP。结果发现:(1)剪断或夹捏坐骨神经都可以诱导脊髓背角C-纤维诱发电位的LTP,该LTP可持续到实验结束(3~9h),在剪断神经前10min用利多卡因局部阻滞坐骨神经则可完全阻断LTP的产生;(2)神经损伤诱导的LTP可被NMDA受体阻断剂AP5所阻断;(3)用单次强直刺激引起LTP后,切断坐骨神经可使LTP的幅度进一步增大,而用多次强直电刺激使LTP饱和后,损伤神经则不能使LTP进一步增大。切断神经引起LTP后,强直电刺激也不能使LTP进一步增大。这些结果表明,急性神经损伤可以诱导脊髓背角C纤维诱发电位LTP,且切断神经能更有效地诱导LTP。该试验进一步支持我们的设想,即脊髓背角C-纤维诱发电位LTP可能在病理性疼痛的形成中起重要作用。  相似文献   

15.
电刺激大鼠下丘脑室旁核(PVH),在同侧中脑中央灰质(CG)内寻找逆行及顺行反应单位,然后观察它们对躯体感觉刺激的反应。实验结果表明:CG 及邻近网状结构内有10%(32/318)的单位呈逆行反应。逆行传导速度平均为0.37±0.24m/s(均数±标准差);推测这种CG→PVH 投射纤维属于细有髓或无髓神经纤维。这些单位分布于 CG 的腹外侧及背外侧亚核。50%(14/28)的逆行单位对坐骨(胫)神经的强电刺激和夹尾等损伤性刺激起反应,但对触毛或低强度的神经干刺激无明显反应。以上结果表明:外周躯体感觉,特别是损伤性信息传入 PVH 时,CG 是其中枢驿站之一。电刺激 PVH 还能顺行激活7.55(24/318)、抑制0.7%(2/318)的 CG 单位。有69%(18/26)的顺行反应单位对外周躯体神经强电刺激及夹尾起反应。提示 PVH 可能通过影响 CG神经元的活动而参与中枢痛觉的整合。  相似文献   

16.
Single units which discharged with regular spontaneous rhythms without intentional stimulation were observed in the ventral nerve cord by intracellular recording close to the sixth abdominal ganglion. These units were divided into two groups: group A units in which interspike intervals varied less than 10 msec.; group B units in which interspike intervals varied within a range of 10 to 30 msec. Group A units maintained "constant" interspike intervals and could not be discharged by sensory inputs, while the majority of group B units could be discharged by appropriate sensory nerve stimulation. Both group A and B units discharged to direct stimulation when the stimulating and recording electrodes were placed in the same ganglionic intersegment, and directly evoked single spikes reset the spontaneous rhythm. In group B units, presynaptic volleys reset the spontaneous rhythm of some units; but in others, synaptically evoked spikes were interpolated within the spontaneous rhythm without resetting. The phenomenon of enhancement could also be demonstrated in spontaneously active units as a result of repetitive stimulation. It is concluded that endogenous pacemaker activity is responsible for much of the regular spontaneous firing observed in crayfish central neurons, and that interaction of evoked responses with such pacemaker sites can produce a variety of effects dependent upon the anatomical relationships between pacemaker and synaptic regions.  相似文献   

17.
Phosphatidylinositol-3-kinase (PI3K) has been identified in the expression of central sensitization after noxious inflammatory stimuli. However, its contribution in neuropathic pain remains to be determined. Here we address the role of PI3K signaling in central sensitization in a model of neuropathic pain, and propose a novel potential drug target for neuropathic pain. Chronic constriction injury (CCI) rat model was used in the study as the model for neuropathic pain. Western blotting, whole-cell patch clamp, and von Frey assay were performed to study biochemical, electrical, and behavioral changes in CCI rats, respectively. A steroid metabolite of the fungi (wortmannin) was used to block PI3K signaling and its effects on CCI rats were tested. PI3K/Akt signaling increased in the spinal cord L4–L6 sections in the CCI rats. CCI also facilitated miniature excitatory postsynaptic potential of dorsal horn substantia gelatinosa neurons, increased phosphorylation of glutamate receptor subunit GluA1 and synapsin at the synapse, and induced mechanic allodynia. Wortmannin reversed biochemical, electrical, and behavioral changes in CCI rats. This study is the first to show PI3K/Akt signaling is required for spinal central sensitization in the CCI neuropathic pain model.  相似文献   

18.

Background

Understanding the underlying mechanisms of neuropathic pain caused by damage to the peripheral nervous system remains challenging and could lead to significantly improved therapies. Disturbance of homeostasis not only occurs at the site of injury but also extends to the spinal cord and brain involving various types of cells. Emerging data implicate neuroimmune interaction in the initiation and maintenance of chronic pain hypersensitivity.

Results

In this study, we sought to investigate the effects of TGF-β1, a potent anti-inflammatory cytokine, in alleviating nerve injury-induced neuropathic pain in rats. By using a well established neuropathic pain animal model (partial ligation of the sciatic nerve), we demonstrated that intrathecal infusion of recombinant TGF-β1 significantly attenuated nerve injury-induced neuropathic pain. TGF-β1 treatment not only prevents development of neuropathic pain following nerve injury, but also reverses previously established neuropathic pain conditions. The biological outcomes of TGF-β1 in this context are attributed to its pleiotropic effects. It inhibits peripheral nerve injury-induced spinal microgliosis, spinal microglial and astrocytic activation, and exhibits a powerful neuroprotective effect by preventing the induction of ATF3+ neurons following nerve ligation, consequently reducing the expression of chemokine MCP-1 in damaged neurons. TGF-β1 treatment also suppresses nerve injury-induced inflammatory response in the spinal cord, as revealed by a reduction in cytokine expression.

Conclusion

Our findings revealed that TGF-β1 is effective in the treatment of neuropathic by targeting both neurons and glial cells. We suggest that therapeutic agents such as TGF-β1 having multipotent effects on different types of cells could work in synergy to regain homeostasis in local spinal cord microenvironments, therefore contributing to attenuate neuropathic pain.  相似文献   

19.
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain.  相似文献   

20.
Song XS  Xu YB  Cao JL  He JH  Zhang LC  Zeng YM 《生理学报》2005,57(2):139-146
采用行为学、免疫组织化学和Western blot方法,观察鞘内注射细胞外信号调节激酶(extracellular signal-regulate kinase,ERK)信号转导通路阻滞剂对慢性压迫性损伤(chronic constriction injury,CCI)大鼠痛行为及脊髓背角内磷酸化cAMP反应元件结合蛋白(phosphorylated cAMP response-element binding protein,pCREB)和Fos表达变化的影响,探讨ERK/CREB转导通路在神经病理性疼痛中的作用。结果表明,CCI可明显增加双侧脊髓背角pCREB、损伤侧脊髓背角浅层Fos阳性神经元表达,以CCI后3与5d时尤为显著。鞘内沣射促分裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)阻滞剂U0126及ERK反义寡核苷酸在减轻大鼠痛行为的同时,能明显抑制双侧脊髓背角内pCREB的表达,同时,Fos阳性神经元的表达也明显减少。大鼠痛行为及脊髓背角pCREB和Fos的表达在时相上一致。上述结果提示pCREB参与pERK介导的神经病理性疼痛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号