首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual size dimorphism (SSD) is a general phenomenon in lizards, and can evolve through sexual selection or natural selection. But natural selection, which was thought to operate mainly through reducing the competition be- tween the two sexes (niche divergence hypothesis), gave rise to a lot of controversy. We tested the niche divergence hypothesis in the toad-headed lizard Phrynocephalus przewalskii by comparing diet composition and prey sizes between males and females. The species was found to be sexual dimorphic, with males having relatively larger snout-vent length, head width, head length, and tail length, while females have relatively larger abdomen length. Based on analysis of 93 studied stomachs, a total of 1359 prey items were identified. The most common prey items were formicid, lygaeid and tenebrionid. The two sexes did not differ in the relative proportions of prey size categories they consumed and the dietary overlap based on prey species was high (O = 0.989). In addition, the meal size, the volume or any maximal dimension of the largest prey item in the stomach was not explained by the sexes. According to our results, food niche divergence might not play an important role in the SSD evolution ofP. przewalskii.  相似文献   

2.
The evolution and maintenance of sexual dimorphism has long been attributed to sexual selection. Niche divergence, however, serves as an alternative but rarely tested selective pressure also hypothesized to drive phenotypic disparity between males and females. We reconstructed ancestral social systems and diet and used Ornstein–Uhlenbeck (OU) modeling approaches to test whether niche divergence is stronger than sexual selection in driving the evolution of sexual dimorphism in cranial size and bite force across extant Musteloidea. We found that multipeak OU models favored different dietary regimes over social behavior and that the greatest degree of cranial size and bite force dimorphism were found in terrestrial carnivores. Because competition for terrestrial vertebrate prey is greater than other dietary groups, increased cranial size and bite force dimorphism reduces dietary competition between the sexes. In contrast, neither dietary regime nor social system influenced the evolution of sexual dimorphism in cranial shape. Furthermore, we found that the evolution of sexual dimorphism in bite force is influenced by the evolution of sexual dimorphism in cranial size rather than cranial shape. Overall, our results highlight niche divergence as an important mechanism that maintains the evolution of sexual dimorphism in musteloids.  相似文献   

3.
山地麻蜥个体发育过程中头部两性异形和食性的变化   总被引:14,自引:0,他引:14  
研究了山地麻蜥(Eremias brenchleyi)个体发育过程中头部两性异形和食性的变化.成体个体大小(SVL)无显著的两性差异,但雄体具有较大的头部(头长和头宽).头部两性异形在孵出幼体就已存在,成体头部两性异形比幼体(包括孵出幼体)更为显著,雄性较大的头部与其头部随SVL的增长速率大于雌性有关.两性头部总体上随SVL呈异速增长,表现为个体发育过程中头长和头宽与SVL的线性回归方程斜率有显著的变化.孵出幼体有相对较大的头部,这种形态特征是胚胎优先保证生态学意义更为显著的头部生长的结果,有利于孵出幼体的早期生存和生长.相对头部大小在个体发育过程中有显著的变化.不同性别和大小的山地麻蜥摄入食物的种类及各种食物在摄入食物中所占的比例有一定程度的差别,食物生态位宽度和重叠度因此有一定的差别.然而,没有直接的证据表明头部两性异形能导致两性食物生态位的明显分离,并有利于减缓两性个体对食物资源的竞争。  相似文献   

4.
Understanding the relationship between form and function is central to our comprehension of how phenotypic diversity evolves. Traits involved in multiple activities, such as social interactions and ecological resource use, are under the influence of different evolutionary forces potentially acting in opposite directions. Such systems provide the opportunity of understanding how potential constraints on morphological variation may influence whole-organism performance. In this study we examined morphology and bite performance in two closely related species of Podarcis wall lizards with divergent microhabitat preferences, to investigate how natural and sexual selection interact to shape the evolution of head traits. Our results show that although head morphology is markedly different between species and sexes, only sexes differ in bite force, indicating that the ecological differentiation between species is reflected in their morphology but does not constrain performance. Rather, the modification of the relative size of head components between species and a shift in the form-function relationship provide a potential explanation of how equal performance is attained by different morphological configurations. Geometric morphometrics provide a clear, biomechanically meaningful image of how this is achieved and show a bisexual pattern of head shape-bite force association in both species. This, together with a strong allometry of head size on body size and head shape on head size, provides indirect morphological evidence for the importance of sexual selection in shaping morphological and functional patterns. Finally, our findings suggest that the differences observed between species and sexes in head traits and bite performance are not reflected in their dietary ecology, implying that if trophic niche segregation between groups occurs, the reasons behind it are not primarily related to head morphology and functional variation.  相似文献   

5.
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females for a given body size in a large sample of Anolis carolinensis . Next, we test if overall head shape differs between the sexes, or if instead specific aspects of skull shape can explain differences in bite force. Our results show that A. carolinensis is indeed dimorphic in body and head size and that males bite harder than females. Geometric morphometric analyses show distinct differences in skull shape between males and females, principally reflecting an enlargement of the jaw adductor muscle chamber. Jaw adductor muscle mass data confirm this result and show that males have larger jaw adductors (but not jaw openers) for a given body and head size. Thus, the observed dimorphism in bite force in A. carolinensis is not merely the result of an increase in head size, but involves distinct morphological changes in skull structure and the associated jaw adductor musculature.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 111–119.  相似文献   

6.
Bite performance in lizards influences many aspects of the animal's lifestyle. During feeding, inter- and intrasexual interactions, and defensive behavior, the ability to bite hard might be advantageous. Although biomechanical considerations predict clear relations between head shape and bite performance, this has rarely been tested. Here we investigate the effect of head shape on bite performance in three closely related species of xenosaurid lizards. Our data show that in this family of lizards, bite performance is mainly determined by head height, with high headed animals biting harder than flat headed ones. Species clearly differ in head shape and bite performance and show a marked sexual dimorphism. The dimorphism in head shape also results in an intersexual difference in bite performance. As head height is the major determinant of bite performance in xenosaurid lizards, trade offs between a crevice dwelling life-style and bite performance seem to occur. The evolutionary implications of these results are discussed. J. Exp. Zool. 290:101-107, 2001.  相似文献   

7.
Although differential selective pressures on males and females of the same species may result in sex‐specific evolutionary trajectories, comparative studies of adaptive radiations have largely neglected within‐species variation. In this study, we explore the potential effects of natural selection, sexual selection, or a combination of both, on bite performance in males and females of 19 species of Liolaemus lizards. More specifically, we study the evolution of bite performance, and compare evolutionary relationships between the variation in head morphology, bite performance, ecological variation and sexual dimorphism between males and females. Our results suggest that in male Liolaemus, the variation in bite force is at least partly explained by the variation in the degree of sexual dimorphism in head width (i.e. our estimate of the intensity of sexual selection), and neither bite force nor the morphological variables were correlated with diet (i.e. our proxy for natural selection). On the contrary, in females, the variation in bite force and head size can, to a certain extent, be explained by variation in diet. These results suggest that whereas in males, sexual selection seems to be operating on bite performance, in the case of females, natural selection seems to be the most likely and most important selective pressure driving the variation in head size. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 461–475.  相似文献   

8.
Island environments differ with regard to numerous features from the mainland and may induce large‐scale changes in most aspects of the biology of an organism. In this study, we explore the effect of insularity on the morphology and performance of the feeding apparatus, a system crucial for the survival of organisms. To this end, we examined the head morphology and feeding ecology of island and mainland populations of the Balkan green lizard, Lacerta trilineata. We predicted that head morphology, performance and diet composition would differ between sexes and habitats as a result of varying sexual and natural selection pressures. We employed geometric morphometrics to test for differences in head morphology, measured bite forces and analysed the diet of 154 adult lizards. Morphological analyses revealed significant differences between sexes and also between mainland and island populations. Relative to females, males had larger heads, a stronger bite and consumed harder prey than females. Moreover, island lizards differed in head shape, but not in head size, and, in the case of males, demonstrated a higher bite force. Islanders had a wider food niche breadth and included more plant material in their diet. Our findings suggest that insularity influences feeding ecology and, through selection on bite force, head morphology. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 469–484.  相似文献   

9.
咬合力作为衡量动物生存能力的重要指标,可以在一定程度上反映动物捕食、反捕食和争夺配偶的能力。对于蜥蜴类动物而言,头部形态和咬合力大小之间常呈现显著线性关系。通过测量2018年7月采集于新疆霍城县图开沙漠的24号草原蜥(Trapelussanguinolenta)(雌13,雄11)的头部形态指标,并使用薄膜压力测试仪测定咬合力,采用单因素方差分析(ANOVA)、主成分分析、模型拟合及逐步回归4种方法探究草原蜥咬合力的两性差异及其与头部形态指标的关系。结果表明,草原蜥头体长、头长、头宽、头高、口宽和下颌长在两性个体间均无显著差异,草原蜥两性个体之间咬合力也没有显著差异。主成分分析及赤池信息模型拟合结果均显示,头长、头宽和下颌长是影响草原蜥咬合力的重要因素,逐步回归分析揭示草原蜥的咬合力主要受头宽影响。上述研究结果表明,草原蜥的咬合力受头部形态大小的影响,但两性个体之间咬合力却不存在显著差异,这与头部形态特征未表现出两性差异一致,这可能是草原蜥对灌丛生活的适应,具体而言,是头部大小与运动权衡的结果。  相似文献   

10.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

11.
Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. J. Morphol. 275:1016–1026, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

13.
Trade‐offs are thought to be important in constraining evolutionary divergence, as they may limit phenotypic diversification. Limbless animals that burrow head‐first have been suggested to be evolutionarily constrained in the development of a large head size and sexual head shape dimorphism because of potential trade‐offs associated with burrowing. Here we use an acontiine skink (Acontias percivali) to test for the existence of trade‐offs between traits thought to be important in burrowing (speed and force). As head size dimorphism has been shown to be limited in acontiine lizards, thus suggesting constraints on head size and shape, we additionally explore the potential for trade‐offs between burrowing and biting. Our data show that A. percivali uses a burrowing style different from those previously described for caecilians and amphisbaenians, which relies on the use of extensive lateral and dorsoventral head movements. Our data also show that animals use their entire bodies to generate force, as peak force was determined by total length only. Additionally, both bite force and the time needed to burrow into the substrate were principally determined by relative head width, suggesting a trade‐off between biting and burrow speed. Performance data were indeed suggestive of a correlation between bite force and the time needed to burrow, but additional data are needed to confirm this pattern. In summary, our data suggests that trade‐offs may exist, and may have been of crucial importance in shaping the evolution of head shape in A. percivali, and burrowing lizards more generally. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 91–99.  相似文献   

14.
蓝尾石龙子的头部两性异形和食性   总被引:10,自引:0,他引:10  
张永普  计翔 《动物学报》2004,50(5):745-752
通过测量头、体大小和胃检研究浙江泰顺产蓝尾石龙子 (Eumeceselegans)个体发育过程中两性异形和食性的变化。蓝尾石龙子成体个体大小和头部大小的两性差异显著 ,雄性大于雌性。不同发育阶段雌性头长与SVL的线性回归斜率无显著差异 ,头宽与SVL线性回归斜率的差异显著 ,成体和SVL <5 0mm幼体头宽随SVL的增长速率显著小于SVL为 5 0 - 6 9mm的幼体。雄性头部相对于SVL呈加速式异速生长。两性比较发现 :雌雄幼体头长和头宽随SVL的增长速率无显著差异 ,SVL <5 0mm幼体特定SVL的头长和头宽无显著的两性差异 ,但SVL为 5 0 - 6 9mm的雄性幼体头长和头宽大于SVL相同的雌性幼体 ;雄性成体头长和头宽随SVL的增长速率显著大于雌性。SVL <5 0mm的雌性幼体头部相对小于SVL为 5 0 - 6 9mm的同性幼体 ,性成熟雌体头部相对小于SVL为 5 0 - 6 9mm的同性幼体。雌性幼体、雄性幼体、雌性成体和雄性成体食物生态位宽度分别为 12 3、 12 5、 4 8和 14 4。雌雄幼体食物生态位重叠度最高 ,雌雄成体食物生态位重叠度次之 ,成体与幼体食物生态位重叠度较小。成体摄入食饵的大小 (用胃内完整食物长度的平均值表示 )和变化范围大于幼体。两性成、幼体摄入的食饵大小差异显著。两性个体摄入的食饵大小均与其SVL呈正相关 ,表明较大  相似文献   

15.
Sexual dimorphism in phenotypic traits associated with the useof resources is a widespread phenomenon throughout the animalkingdom. While ecological dimorphisms are often initially generatedby sexual selection operating on an animal's size, natural selectionis believed to maintain, or even amplify, these dimorphismsin certain ecological settings. The trophic apparatus of snakeshas proven to be a model system for testing the adaptive natureof ecological dimorphisms because head size is rarely undersexual selection and it limits the maximum ingestible size ofprey in these gape-limited predators. Significantly less attentionhas been paid to the evolution of ecological dimorphisms inlizards, however, which may be due to the fact that lizards’feeding apparatus can be under both sexual and natural selectionsimultaneously, making it difficult to formulate clear-cut hypothesesto distinguish between the influences of natural and sexualselection. In order to tease apart the respective influencesof natural selection and sexual selection on the feeding apparatusof squamates, we take an integrative approach to formulate twohypotheses for snakes and lizards, respectively: (1) For gape-limitedsnakes, we predict that natural selection will act to generatedifferences in maximum gape, which will translate into differencesin maximum ingestible prey size between the sexes. (2) For lizardswhich mechanically reduce their prey, we predict that the degreeof dimorphism in head size should be positively correlated tothe degree of dimorphism in bite force which, in turn, shouldbe correlated to dimorphism in aspects of size or hardness ofprey. Finally, we predict that functional differences in thefeeding apparatus of these animals will also be linked withdifferences in sex-based feeding behavior and with selectionof prey.  相似文献   

16.
The Common Chuckwalla [ Sauromalus ater (=  obesus )] is a large, sexually dimorphic lizard with a flattened head that takes refuge from predators in rock crevices. Males use their relatively large heads to bite competing males during territorial fights and to restrain females during copulation. Flattened heads with an antipredator function (i.e. seeking refuge in crevices) and enlarged heads with intrasexual competition and reproductive functions suggest possible antagonism between selective pressures on head morphology in males. To examine this hypothesis, we performed a morphometric analysis and measured the bite-force performance of 49 adult chuckwallas. Males had disproportionately wider heads than females, but did not have deeper heads. Males bit with nearly four times the force of females, consistent with the notion of sexual selection for high bite force in males. Although constrained by crevice-wedging behaviour, head depth was a good predictor of bite force in both sexes. In males, however, osteological head width also was a good predictor of bite force. These results are consistent with the hypothesis that head shape in males is under antagonistic selective pressures, which may partly explain the pattern of head shape dimorphism. The disproportionately wide head of males may reflect anatomical modifications to enhance bite force in response to sexual selection in spite of presumed constraints on head shape for crevice-wedging behaviour  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 215–222.  相似文献   

17.
Richard Shine 《Oecologia》1986,69(2):260-267
Filesnakes (Acrochordus arafurae) are large (to 2 m), heavy-bodied snakes of tropical Australia. Sexual dimorphism is evident in adult body sizes, weight/length ratios, and body proportions (relative head and tail lengths). Dimorphism is present even in neonates. Two hypotheses for the evolution of such dimorphism are (1) sexual selection or (2) adaptation of the sexes to different ecological niches. The hypothesis of sexual selection is consistent with general trends of sexually dimorphic body sizes in snakes, and accurately predicts, for A. arafurae, that the larger sex (female) is the one in which reproductive success increases most strongly with increasing body size. However, the sexual dimorphism in relative head sizes is not explicable by sexual selection.The hypothesis of adaptation to sex-specific niches predicts differences in habitats and/or prey. I observed major differences between male and female A. arafurae in prey types, prey sizes and habitat utilization (shallow versus deep water). Hence, the sexual dimorphism in relative head sizes is attributed to ecological causes rather than sexual selection. Nonetheless, competition between the sexes need not be invoked as the selective advantage of this character divergence. It is more parsimonious to interpret these differences as independent adaptations of each sex to increase foraging success, given pre-existing sexually-selected differences in size, habitat or behavior. Data for three other aquatic snake species, from phylogenetically distant taxa, suggest that sexual dimorphism in food habits, foraging sites and feeding morphology, is widespread in snakes.  相似文献   

18.
Why are American mink sexually dimorphic? A role for niche separation   总被引:3,自引:0,他引:3  
American mink are highly sexually dimorphic, with males being up to twice the size of females. Sexual dimorphism may arise for several reasons, including intra- or inter-sexual selection, inter-sexual competition, or divergent reproductive roles. Whether or not dimorphism arises from competition, a degree of niche separation is expected in dimorphic species. Sexual divergence in feeding niche has been reported for many species, including mink. This is likely to be manifested in a greater degree of dimorphism in those structures, such as teeth, that are used for the acquisition of prey. We tested the hypothesis that teeth and other trophic structures of male mink would be significantly larger than those of females, after controlling for underlying skeletal size differences. Canine and carnassial teeth, and several skull dimensions, were larger than predicted in males. There is good evidence that sexual dimorphism in mink trophic apparati is greater than predicted from allometry. We examined the development of dimorphism in various features with age and found that it was not consistent. Several trophic features were dimorphic amongst juveniles, and the degree of dimorphism remained relatively constant with age. Dimorphism in canines, and in relative body mass, was less apparent amongst juveniles and increased with increasing age. We discuss our results in the light of contemporary theories on the evolution and maintenance of sexual size dimorphism and argue that niche separation as a result of dimorphism in trophic features, while probably not the driving force behind sexual size dimorphism, may play a role in its maintenance.  相似文献   

19.
Many animal taxa exhibit a positive correlation between sexual size dimorphism and sex differences in age at maturity, such that members of the larger sex mature at older ages than members of the smaller sex. Previous workers have suggested that sexual bimaturation is a product of sex differences in growth trajectories, but to date no one has tested this hypothesis. The current study uses growth-based models to study relationships between sexual size dimorphism and sexual bimaturation in species with asymptotic growth after maturity. These models show that sex differences in asymptotic size would produce sexual bimaturation even if both sexes approach their respective asymptotic sizes at the same age, mature at the same proportion of asymptotic size and have otherwise equivalent growth and maturation patterns. Furthermore, our analyses show that there are three ways to reduce sexual bimaturation in sexually size-dimorphic species: (1) higher characteristic growth rates for members of the larger sex, (2) larger size at birth, hatching or metamorphosis for members of the larger sex or (3) smaller ratio of size at maturity to asymptotic size (relative size at maturity) for members of the larger sex. Of these three options, sex differences in relative size at maturity are most common in size-dimorphic species and, in both male-larger and female-larger species, members of the larger sex frequently mature at a smaller proportion of their asymptotic size than do members of the smaller sex. Information about the growth and maturation patterns of a taxon can be used to determine relationships between sexual size dimorphism and sexual bimaturation for the members of that taxon. This process is illustrated for Anolis lizards, a genus in which both sexes exhibit the same strong correlation (r 0.97) between size at maturity and asymptotic size, and in which the relative size at maturity is inversely related to asymptotic size for both sexes. As a result, sexually size-dimorphic species of anoles exhibit the expected pattern of a smaller relative size at maturity for members of the larger sex. However, for species in this genus, sex differences in the relative size at maturity are not strong enough to produce the same age at maturity for both sexes in sexually size-dimorphic species. Members of the larger sex (usually males) are still expected to mature at older ages than members of the smaller sex in Anolis lizards.  相似文献   

20.
Males of many lizard species have longer tails than similarly-sized females. We hypothesized that this dimorphism is induced by a longer non-autotomous tail part in males, which is associated with the presence of the copulatory organs at the tail base, and presumably reduces the males' ability to escape predation by tail shedding. A compensatory mechanism would be an increase of total tail length in males, to achieve equal lengths of the autotomous tail part in both sexes. A critical prediction of this 'morphological constraint' hypothesis is that the extent of dimorphism in total tail length increases with the magnitude of sexual differences in length of the non-autotomous tail base. We tested this prediction through a comparative study in a small clade of lacertid lizards. Within each of nine species, sexual differences in length of the non-autotomous tail base and in total tail length do not change with body size. All species, except one, exhibit a clear male-biased dimorphism in length of the non-breakable tail base. In all species studied, males have longer tails than females. We used the method of phylogenetically independent contrasts to explore the interspecific relation between dimorphism in length of the tail base and sexual differences in total tail length. Contrary to our prediction, we found no evidence for a positive correlation between the extent of dimorphism in both traits. Thus, constraints imposed by the male copulatory organs on tail autotomy do not seem to be a significant factor in the evolution of dimorphism in tail length in this clade of lacertid lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号